这节来说说如何检索mongodb数据。首先向文档中插入一些数据。1. 插入数据 use ttlsa_comswitched to db ttlsa_com db.mediaCollection.insert({ "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher"
这节来说说如何检索mongodb数据。首先向文档中插入一些数据。 1. 插入数据> use ttlsa_com switched to db ttlsa_com > db.mediaCollection.insert({ "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Author": [ "Membrey, Peter", "Plugge, Eelco", "Hawkins, Tim" ] }) > db.mediaCollection.insert({ "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind" }) > db.mediaCollection.insert({ "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ]}) > db.mediaCollection.find() { "_id" : ObjectId("5353462f93efef02c962da71"), "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Author" : [ "Membrey, Peter", "Plugge, Eelco", "Hawkins, Tim" ] } { "_id" : ObjectId("5353462f93efef02c962da72"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind" } { "_id" : ObjectId("5353463193efef02c962da73"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ] }2. 检索 find函数是经常用到的一个。前面的文章也有介绍到。下面看看有选择性的检索,查看你感兴趣的数据。 检索"Artist" : "Nirvana"的数据:
> db.mediaCollection.find({"Artist" : "Nirvana"}).toArray() [ { "_id" : ObjectId("5353462f93efef02c962da72"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind" }, { "_id" : ObjectId("5353463193efef02c962da73"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ] } ]上面的查询虽说检索出"Artist" : "Nirvana"的数据,但是返回了全部列的信息,但是我只要查看Title和Tracklist.Title列
> db.mediaCollection.find({"Artist" : "Nirvana"}, {Title:1, "Tracklist.Title":1}).toArray() [ { "_id" : ObjectId("5353462f93efef02c962da72"), "Title" : "Nevermind" }, { "_id" : ObjectId("5353463193efef02c962da73"), "Title" : "Nevermind", "Tracklist" : [ { "Title" : "Smells like teen spirit" }, { "Title" : "In Bloom" } ] } ]Title:1, "Tracklist.Title":1表示只返回这两列信息。升序。也可以反着来Title:0, "Tracklist.Title":0表示返回除了这两列的其他所有列信息。 注意:_id字段总是会返回。 3. ?使用逗号 当文档结构变的复杂时,如含有数组或嵌入对象文档,就需要使用到逗号,来检索嵌入在文档中的信息。
> db.mediaCollection.find({"Tracklist.Length":"5:02"}).toArray() [ { "_id" : ObjectId("5353463193efef02c962da73"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ] } ]查询整个内嵌文档:
> db.mediaCollection.find({Tracklist:{"Length":"5:02"}}).toArray() [ ] > db.mediaCollection.find({Tracklist:{"Track" : "1","Title" : "Smells like teen spirit","Length":"5:02"}}).toArray() [ { "_id" : ObjectId("5353463193efef02c962da73"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ] } ] > db.mediaCollection.find({Tracklist:{"Track" : "1","Length" : "5:02","Title" : "Smells like teen spirit"}}).toArray() [ ]查询整个文档需要全部列出内嵌文档的字段,且顺序要一致,否则匹配不到。 查询内嵌文档的多个字段。如查询有joe发表且分数在5分以上:
> db.mediaCollection.insert({ "content" : "...", "comments" : [ { "author" : "joe", "score" : 3, "comment" : "nice post" }, { "author" : "mary", "score" : 6, "comment" : "terrible post" } ] }) > db.mediaCollection.find().toArray() [ { "_id" : ObjectId("5353462f93efef02c962da71"), "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Author" : [ "Membrey, Peter", "Plugge, Eelco", "Hawkins, Tim" ] }, { "_id" : ObjectId("5353462f93efef02c962da72"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind" }, { "_id" : ObjectId("5353463193efef02c962da73"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ] }, { "_id" : ObjectId("5353681293efef02c962da7a"), "content" : "...", "comments" : [ { "author" : "joe", "score" : 3, "comment" : "nice post" }, { "author" : "mary", "score" : 6, "comment" : "terrible post" } ] } ] > db.mediaCollection.find({"comments" : {"author" : "joe", "score" : {"$gte" : 5}}}).toArray() [ ] > db.mediaCollection.find({"comments.author" : "joe", "comments.score" : {"$gte" : 5}}).toArray() [ { "_id" : ObjectId("5353681293efef02c962da7a"), "content" : "...", "comments" : [ { "author" : "joe", "score" : 3, "comment" : "nice post" }, { "author" : "mary", "score" : 6, "comment" : "terrible post" } ] } ]上面的查询是不对的。 要正确的指定一组条件,而不是每个键,因此要使用到$elemMatch。这样就可以用来部分指定匹配数组中的单个内嵌文档的限定条件。正确的写法如下所示:
> db.mediaCollection.find({"comments" : {"$elemMatch" : {"author" : "joe", "score" : {"$gte" : 5}}}}).toArray() [ ]对于数组:
> db.mediaCollection.find({"Author":"Membrey, Peter"}).toArray() [ { "_id" : ObjectId("5353462f93efef02c962da71"), "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Author" : [ "Membrey, Peter", "Plugge, Eelco", "Hawkins, Tim" ] } ]正则表达式查询:
> db.mediaCollection.find({"Title":/MongoDB/i}).toArray() [ { "_id" : ObjectId("5353462f93efef02c962da71"), "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Author" : [ "Membrey, Peter", "Plugge, Eelco", "Hawkins, Tim" ] } ]对检索结果进行Sort, Limit, 和Skip请看下节内容。
原文地址:mongodb查询, 感谢原作者分享。

掌握添加MySQL用户的方法对于数据库管理员和开发者至关重要,因为它确保数据库的安全性和访问控制。1)使用CREATEUSER命令创建新用户,2)通过GRANT命令分配权限,3)使用FLUSHPRIVILEGES确保权限生效,4)定期审计和清理用户账户以维护性能和安全。

chosecharforfixed-lengthdata,varcharforvariable-lengthdata,andtextforlargetextfield.1)chariseffity forconsistent-lengthdatalikecodes.2)varcharsuitsvariable-lengthdatalikenames,ballancingflexibilitibility andperformance.3)

在MySQL中处理字符串数据类型和索引的最佳实践包括:1)选择合适的字符串类型,如CHAR用于固定长度,VARCHAR用于可变长度,TEXT用于大文本;2)谨慎索引,避免过度索引,针对常用查询创建索引;3)使用前缀索引和全文索引优化长字符串搜索;4)定期监控和优化索引,保持索引小巧高效。通过这些方法,可以在读取和写入性能之间取得平衡,提升数据库效率。

ToaddauserremotelytoMySQL,followthesesteps:1)ConnecttoMySQLasroot,2)Createanewuserwithremoteaccess,3)Grantnecessaryprivileges,and4)Flushprivileges.BecautiousofsecurityrisksbylimitingprivilegesandaccesstospecificIPs,ensuringstrongpasswords,andmonitori

tostorestringsefliceflicyInmySql,ChooSetherightDataTypeBasedyOrneOrneEds:1)USEcharforFixed-LengthStstringStringStringSlikeCountryCodes.2)UseVarcharforvariable-lengtthslikenames.3)USETEXTCONTENT.3)

选择MySQL的BLOB和TEXT数据类型时,BLOB适合存储二进制数据,TEXT适合存储文本数据。1)BLOB适用于图片、音频等二进制数据,2)TEXT适用于文章、评论等文本数据,选择时需考虑数据性质和性能优化。

No,youshouldnotusetherootuserinMySQLforyourproduct.Instead,createspecificuserswithlimitedprivilegestoenhancesecurityandperformance:1)Createanewuserwithastrongpassword,2)Grantonlynecessarypermissionstothisuser,3)Regularlyreviewandupdateuserpermissions

mySqlStringDatatatPessHouldBechoseBeadeDataCharacteristicsAndUsecases:1)USECHARFORFIXED LENGTHSTRINGSTRINGSLIKECOUNTRYCODES.2)USEDES.2)usevarcharforvariable-lengtthstringstringstringstringstringstringstringslikenames.3)usebinaryorvarrinaryorvarinarydatalbonydatalgebgeenfopical.4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Linux新版
SublimeText3 Linux最新版