本文翻译自《BIG DATA ANALYTICS BEYOND HADOOP》译者:吴京润 校对:方腾飞 我试图给人们学习大数据留下的一点深刻印象:尽管Apache Hadoop很有用,而且是一项非常成功的技术,但是这一观点的前提已经有些过时了。考虑一下这样一条时间线:由谷歌实现的MapR
本文翻译自《BIG DATA ANALYTICS BEYOND HADOOP》译者:吴京润 校对:方腾飞
我试图给人们学习大数据留下的一点深刻印象:尽管Apache Hadoop很有用,而且是一项非常成功的技术,但是这一观点的前提已经有些过时了。考虑一下这样一条时间线:由谷歌实现的MapReduce投入使用的时间可追溯到2002年,发表于2004年。Yahoo!于2006年发起Hadoop项目。MR是基于十年前的数据中心的经济上的考虑。从那时以来,已经有太多的东西发生了变化:多核心处理器、大内存地址空间、10G网络带宽、SSD,而至今,这已经产生足够的成本效益。这些极大改变了在构建可容错分布式商用系统规模方面的取舍。
此外,我们对于可处理数据的规模的观念也发生了变化。成功的公司诸如亚马逊、eBay、谷歌,它们想要更上一层楼,也促使随后的商业领袖重新思考:数据可以用来做什么?举个例子,十年前是否有为大型图书出版商优化业务的大规模图论用例?不见得有。出版社高层不可能有耐心听取这样一个古怪的工程建议。这本书本身的营销将基于大规模数据、开源、图论引擎,它们也将在本书后续章节讲到。同样的,广告科技和社交网络应用驱动着开发技术,而如今在工业化的因特网,采用Hadoop将显的捉襟见肘,也就是所谓的“物联网”——在某些情况下,会有几个数量级的差距。
自从MR的商用硬件规模首次制定以来,底层系统的模型已发生了巨大变化。我们的商业需求与期望模型也发生了显著的变化。此外,应用数学的数据规模与十年前的构想也有巨大的差异。如今主流编程语言也能为并行处理的软件工程实践提供更好的支持。
Agneeswaran博士认为这些视图,以及对它们的更多关注和系统方法,呈现了如今大数据环境的全景视图,甚至还有超越。本书引领我们看到过去十年如何通过MapReduce做批处理数据分析。这些章节介绍了理解它们的关键历史背景,并为应用这些技术提供了清晰的商业用例的至关重要的方面。这些论据为每个用例提供了分析,并指出为什么Hadoop不是很适合应用于此——通过对例证的彻底研究、对可用开源技术的出色调查、以及对非开源项目的出版文献的回顾。
本书研究了如今的商业需求中除Hadoop以外的最佳实践以及数据访问方式的可用技术:迭代、流式处理(译者注:原文是streaming)、图论,以及其它技术。比如,一些企业的收入损失计算可精确到毫秒级,以至于“批处理窗口”这样的概念变的毫无意义。实时分析是惟一可以想到的可行方案。开源框架诸如Apache Spark、Storm、Titan、GraphLab,还有Apache Mesos可以满足这些需求。Agneeswaran博士引导读者们了解这些框架的架构和计算模型、研究通用设计模式。他在书中提到了业务范围的影响以及实现细节还有代码样例。
伴随着这些框架,本书也为开放标准预测模型标记语言提出了一个引人入胜的例子,使得预测模型可以在不同平台与环境之间迁移。本书还提到YARN以及下一代超越MapReduce的模型。
这正是当今业界的焦点——Hadoop基于2002年以来的IT经济,然而更新的框架与当代业界的用例更为密切。另外,本书既提供了专家指导,也热烈欢迎由大数据分析开启的无限可能。
Paco Nathan
图书《Enterprise Data Workflows with Cascading》的作者 ? (校对注:样章下载)
Zettacap的顾问以及Amplify的合作伙伴
(全文完)如果您喜欢此文请点赞,分享,评论。
- 原创文章转载请注明出处:超越Hadoop的大数据分析之前言
- 小额赞助本站::我要赞助

存储过程是MySQL中的预编译SQL语句集合,用于提高性能和简化复杂操作。1.提高性能:首次编译后,后续调用无需重新编译。2.提高安全性:通过权限控制限制数据表访问。3.简化复杂操作:将多条SQL语句组合,简化应用层逻辑。

MySQL查询缓存的工作原理是通过存储SELECT查询的结果,当相同查询再次执行时,直接返回缓存结果。1)查询缓存提高数据库读取性能,通过哈希值查找缓存结果。2)配置简单,在MySQL配置文件中设置query_cache_type和query_cache_size。3)使用SQL_NO_CACHE关键字可以禁用特定查询的缓存。4)在高频更新环境中,查询缓存可能导致性能瓶颈,需通过监控和调整参数优化使用。

MySQL被广泛应用于各种项目中的原因包括:1.高性能与可扩展性,支持多种存储引擎;2.易于使用和维护,配置简单且工具丰富;3.丰富的生态系统,吸引大量社区和第三方工具支持;4.跨平台支持,适用于多种操作系统。

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。