搜索
首页数据库mysql教程Schema Design for Social Inboxes in MongoDB

Designing a schema is a critical part of any application. Like most databases, there are many options for modeling data in MongoDB, and it is important to incorporate the functional requirements and performance goals for your application w

Designing a schema is a critical part of any application. Like most databases, there are many options for modeling data in MongoDB, and it is important to incorporate the functional requirements and performance goals for your application when determining the best design. In this post, we’ll explore three approaches for using MongoDB when creating social inboxes or message timelines.

If you’re building a social network, like Twitter for example, you need to design a schema that is efficient for users viewing their inbox, as well as users sending messages to all their followers. The whole point of social media, after all, is that you can connect in real time.

There are several design considerations for this kind of application:

  • The application needs to support a potentially large volume of reads and writes.
  • Reads and writes are not uniformly distributed across users. Some users post much more frequently than others, and some users have many, many more followers than others.
  • The application must provide a user experience that is instantaneous.
  • Edit 11/6: The application will have little to no user deletions of data (a follow up blog post will include information about user deletions and historical data)

Because we are designing an application that needs to support a large volume of reads and writes we will be using a sharded collection for the messages. All three designs include the concept of “fan out,” which refers to distributing the work across the shards in parallel:

  1. Fan out on Read
  2. Fan out on Write
  3. Fan out on Write with Buckets

Each approach presents trade-offs, and you should use the design that is best for your application’s requirements.

The first design you might consider is called Fan Out on Read. When a user sends a message, it is simply saved to the inbox collection. When any user views their own inbox, the application queries for all messages that include the user as a recipient. The messages are returned in descending date order so that users can see the most recent messages.

To implement this design, create a sharded collection called inbox, specifying the from field as the shard key, which represents the address sending the message. You can then add a compound index on the to field and the sent field. Once the document is saved into the inbox, the message is effectively sent to all the recipients. With this approach sending messages is very efficient.

Viewing an inbox, on the other hand, is less efficient. When a user views their inbox the application issues a find command based on the to field, sorted by sent. Because the inbox collection uses from as its shard key, messages are grouped by sender across the shards. In MongoDB queries that are not based on the shard key will be routed to all shards. Therefore, each inbox view will be routed to all shards in the system. As the system scales and many users go to view their inbox, all queries will be routed to all shards. This design does not scale as well as each query being routed to a single shard.

With the “Fan Out on Read” method, sending a message is very efficient, but viewing the inbox is less efficient.

Fan out on Read is very efficient for sending messages, but less efficient for reading messages. If the majority of your application consists of users sending messages, but very few go to read what anyone sends them — let’s call it an anti-social app — then this design might work well. However, for most social apps there are more requests by users to view their inbox than there are to send messages.

The Fan out on Write takes a different approach that is more optimized for viewing inboxes. This time, instead of sharding our inbox collection on the sender, we shard on the message recipient. In this way, when we go to view an inbox the queries can be routed to a single shard, which will scale very well. Our message document is the same, but now save a copy of the message for every recipient.

With the “Fan Out on Write” method, viewing the inbox is efficient, but sending messages consumes more resources.

In practice we might implement the saving of messages asynchronously. Imagine two celebrities quickly exchange messages at a high-profile event - the system could quickly be saturated with millions of writes. By saving a first copy of their message, then using a pool of background workers to write copies to all followers, we can ensure the two celebrities can exchange messages quickly, and that followers will soon have their own copies. Furthermore, we could maintain a last-viewed date on the user document to ensure they have accessed the system recently - zombie accounts probably shouldn’t get a copy of the message, and for users that haven’t accessed their account recently we could always resort to our first design - Fan out on Read - to repopulate their inbox. Subsequent requests would then be fast again.

At this point we have improved the design for viewing inboxes by routing each inbox view to a single shard. However, each message in the user’s inbox will produce a random read operation. If each inbox view produces 50 random reads, then it only takes a relatively modest number of concurrent users to potentially saturate the disks. Fortunately we can take advantage of the document data model to further optimize this design to be even more efficient.

Fan out on Write with Buckets refines the Fan Out on Write design by “bucketing” messages together into documents of 50 messages ordered by time. When a user views their inbox the request can be fulfilled by reading just a few documents of 50 messages each instead of performing many random reads. Because read time is dominated by seek time, reducing the number of seeks can provide a major performance improvement to the application. Another advantage to this approach is that there are fewer index entries.

To implement this design we create two collections, an inbox collection and a user collection. The inbox collection uses two fields for the shard key, owner and sequence, which holds the owner’s user id and sequence number (i.e. the id of 50-message “bucket” documents in their inbox). The user collection contains simple user documents for tracking the total number of messages in their inbox. Since we will probably need to show the total number of messages for a user in a variety of places in our application, this is a nice place to maintain the count instead of calculating for each request. Our message document is the same as in the prior examples.

To send a message we iterate through the list of recipients as we did in the Fan out on Write example, but we also take another step to increment the count of total messages in the inbox of the recipient, which is maintained on the user document. Once we know the count of messages, we know the “bucket” in which to add the latest message. As these messages reach the 50 item threshold, the sequence number increments and we begin to add messages to the next “bucket” document. The most recent messages will always be in the “bucket” document with the highest sequence number. Viewing the most recent 50 messages for a user’s inbox is at most two reads; viewing the most recent 100 messages is at most three reads.

Normally a user’s entire inbox will exist on a single shard. However, it is possible that a few user inboxes could be spread across two shards. Because our application will probably page through a user’s inbox, it is still likely that every query for these few users will be routed to a single shard.

Fan out on Write with Buckets is generally the most scalable approach of the these three designs for social inbox applications. Every design presents different trade-offs. In this case viewing a user’s inbox is very efficient, but writes are somewhat more complex, and more disk space is consumed. For many applications these are the right trade-offs to make.

Schema design is one of the most important optimizations you can make for your application. We have a number of additional resources available on schema design if you are interested in learning more:

Fan out on Read
Fan out on Write
Fan out on Write with Buckets
Send Message Performance
Best
Single write
Good
Shard per recipient
Multiple writes
Worst
Shard per recipient
Appends (grows)
Read Inbox Performance
Worst
Broadcast all shards
Random reads
Good
Single shard
Random reads
Best
Single shard
Single read
Data Size
Best
Message stored once
Worst
Copy per recipient
Worst
Copy per recipient


Schema design is one of the most important optimizations you can make for your application. We have a number of additional resources available on schema design if you are interested in learning more:

  • Check out the recording of our recent Schema Design webinar on this topic.
  • Schema Design in general in the MongoDB Manual
  • You can also view our schema design resources on the MongoDB docs page
  • If you have any schema design questions, please view the archived questions on our user forum or ask a question yourselfon the MongoDB User Forum.
声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL:初学者的基本技能MySQL:初学者的基本技能Apr 18, 2025 am 12:24 AM

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL:结构化数据和关系数据库MySQL:结构化数据和关系数据库Apr 18, 2025 am 12:22 AM

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL:解释的关键功能和功能MySQL:解释的关键功能和功能Apr 18, 2025 am 12:17 AM

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL的目的:与MySQL数据库进行交互SQL的目的:与MySQL数据库进行交互Apr 18, 2025 am 12:12 AM

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

初学者的MySQL:开始数据库管理初学者的MySQL:开始数据库管理Apr 18, 2025 am 12:10 AM

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA

MySQL的角色:Web应用程序中的数据库MySQL的角色:Web应用程序中的数据库Apr 17, 2025 am 12:23 AM

MySQL在Web应用中的主要作用是存储和管理数据。1.MySQL高效处理用户信息、产品目录和交易记录等数据。2.通过SQL查询,开发者能从数据库提取信息生成动态内容。3.MySQL基于客户端-服务器模型工作,确保查询速度可接受。

mysql:构建您的第一个数据库mysql:构建您的第一个数据库Apr 17, 2025 am 12:22 AM

构建MySQL数据库的步骤包括:1.创建数据库和表,2.插入数据,3.进行查询。首先,使用CREATEDATABASE和CREATETABLE语句创建数据库和表,然后用INSERTINTO语句插入数据,最后用SELECT语句查询数据。

MySQL:一种对数据存储的初学者友好方法MySQL:一种对数据存储的初学者友好方法Apr 17, 2025 am 12:21 AM

MySQL适合初学者,因为它易用且功能强大。1.MySQL是关系型数据库,使用SQL进行CRUD操作。2.安装简单,需配置root用户密码。3.使用INSERT、UPDATE、DELETE、SELECT进行数据操作。4.复杂查询可使用ORDERBY、WHERE和JOIN。5.调试需检查语法,使用EXPLAIN分析查询。6.优化建议包括使用索引、选择合适数据类型和良好编程习惯。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版