在Hadoop集群从1.0升级到2.0之后,我们一直在解决很多很多的问题。在今年8月初,我们检测到线上频繁有机器变成死亡结点,一段时间后自动恢复。进入死亡结点状态的DataNode将不能读写数据块。我们观察了一下日志,看到DataNode中打印出很多接受数据快传输的线
在Hadoop集群从1.0升级到2.0之后,我们一直在解决很多很多的问题。在今年8月初,我们检测到线上频繁有机器变成死亡结点,一段时间后自动恢复。进入死亡结点状态的DataNode将不能读写数据块。我们观察了一下日志,看到DataNode中打印出很多接受数据快传输的线程(DataXceiver),线程都是在Receiving的状态,而没有结束。估摸了一下在死亡结点发生的阶段大约有300个左右的线程积累下来。但是,没找到其它突破口。
由于,HDFS的Client会自动重试。如果一个结点进入死亡结点,只要另外的数据块的结点依然可读,Client还是可以读取到数据块的。所以,死亡结点的问题对线上业务没有造成影响。当时,还有其它优先级更高的事情,所以,问题转为观察状态。
然后终于在一次机房意外断电,集群重启之后,一个线上的作业报找不到数据块。经日志确认,产生的原因是拥有这个数据块副本的两个机器同时进入死亡结点! 于是,问题转入高优先级,优先解决。
现象总结
- 出现死亡结点的机器集中在磁盘数量较多的机器。
- 死亡结点跟机器的CPU,内存或者网络关系不大。
- 出现死亡结点的时候,DataNode有大量DataXceiver的线程积压。
- 虽然,总体上机器出现死亡结点的时间比较分散。但是,单一的DataNode上出现死亡结点的间隔必然是6小时或者6小时的整数倍。
攻坚
首先知道,DataNode进入死亡结点状态是因为NameNode长期接收不到DataNode的心跳包,就会把DataNode归入死亡结点。而DataNode的心跳线程是单独一个线程。
现象的最后一点,6小时的间隔,可谓是这个问题的突破点。在配置文件中找到6小时的间隔的工作有两种:
- DataNode和NameNode的6小时一次的心跳报告。用于更新NameNode上的Block信息。
- DataNode每6小时一次的磁盘扫描。用于更新内存中的信息和磁盘中信息的不一致。
根据两者打印的日志和死亡结点发生的时间进行精确对比,发现后者的时间基本吻合。 然后,我们在集中查看磁盘扫描(DirectoryScanner)的代码。
描述一下磁盘扫描的工作流程:
- 启动一个主线程和一个线程池。
- 主线程往线程池提交多个磁盘扫描的任务。任务是遍历整个数据目录记录所有的数据块的信息和对应的Meta信息
- 主线程等待线程池的任务返回,收集扫描结果。
- 将扫描结果和内存中的数据块进行对比,得到DiffRecord,算法复杂度O(n),数据块越多速度越慢。
- 根据DiffRecord修改对应的内存数据。
第一步,主线程和线程池的线程都是Daemon线程。Daemon线程的默认优先级比较低。
第二步,由于涉及到磁盘读写。如果,外部磁盘压力大的时候,会拖慢整个进度。但是,整个过程没有加锁。不可能对其它线程产生影响。
第四步,数据块对比过程,为了阻止对blockMap的修改,整个过程针对DataSet对象加锁(DataSet对象是DataNode中保存所有数据块信息的内存对象)。
那心跳进程为什么会使用DataSet的对象锁? 我们写了个小程序测试,在对DataSet加锁的情况下,启动心跳线程。发现心跳线程在获取磁盘的可用空间的时候,需要获得DataSet的锁。
于是,问题变得清晰了:在6小时一次的磁盘扫描中,由于DirectoryScanner长久占用了DataSet的锁,导致心跳线程不能发出心跳包。DataNode进入死亡结点状态。而问题频发在磁盘较多的机器是因为,数据块数量和对比的过程的耗时相关。那是什么原因导致DirectoryScanner长久占用了DataSet的锁呢?
我们观察了加锁部分的代码,没有找到磁盘操作。我们估摸了下,最多数据块的机器也才80W左右各数据块。如果是纯内存操作,不可能占用锁长达10分钟甚至30分钟之久。
然后我们将怀疑的地方锁定在主线程的Daemon属性。因为,Daemon属性的线程优先级较低,怀疑是主线程在多线程的情况下,分配不到CPU时间片。
于是,我们作出第一个修改:将主线程改为普通线程的优先级。
上线第二天,死亡结点现象还是出现,现象出现的时间相对来说是短了点,但还是不能解决问题。
于是,我们开了个大招:针对死亡结点频发的结点,加上一个每分钟打印一次DataNode的jstack的脚本。
终于我们捕获了在死亡结点发生时候的几个堆栈。经过对比分析,得出的结论是:
(呵呵)数据块对比过程中,有一个使用Java的File对象的获取文件长度的getlength方法。而这个方法是直接调用一个native方法,获取磁盘上文件的长度。
当初我们就猜想,加锁部分是否有磁盘的IO操作。因为IO操作的快慢,会受到当时的机器状态影响很大。不得不说,这个位置太隐蔽了。看了很久都没发现,还好有jstack截获出来。
总结
6小时一次的DirectoryScanner在数据块对比过程中,会对DataSet加锁。如果,机器的磁盘压力很高的情况下,对比过程中的磁盘操作十分耗时。导致DirectoryScanner长期持有DataSet的锁,阻塞心跳线程和所有的DataXceiver的线程。DataNode变成死亡结点。一段时间后,对比过程结束。DataSet锁释放,DataNode回归正常工作。
解决
知道问题了就好解决了。我们采取的方式是把getlength操作提取到第二步的线程池的异步磁盘扫描中进行。
部署到线上后,数据对比时间降低到2秒左右。至此,死亡结点问题解决!
后续我们把Patch提交到Hadoop社区HDFS-5341,其中蹩脚的英语语法请大家无视。
原文地址:解决HDFS磁盘扫描导致死亡结点的问题, 感谢原作者分享。

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。

选择PostgreSQL而非MySQL的场景包括:1)需要复杂查询和高级SQL功能,2)要求严格的数据完整性和ACID遵从性,3)需要高级空间功能,4)处理大数据集时需要高性能。PostgreSQL在这些方面表现出色,适合需要复杂数据处理和高数据完整性的项目。

MySQL数据库的安全可以通过以下措施实现:1.用户权限管理:通过CREATEUSER和GRANT命令严格控制访问权限。2.加密传输:配置SSL/TLS确保数据传输安全。3.数据库备份和恢复:使用mysqldump或mysqlpump定期备份数据。4.高级安全策略:使用防火墙限制访问,并启用审计日志记录操作。5.性能优化与最佳实践:通过索引和查询优化以及定期维护兼顾安全和性能。

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

Atom编辑器mac版下载
最流行的的开源编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

禅工作室 13.0.1
功能强大的PHP集成开发环境

WebStorm Mac版
好用的JavaScript开发工具