This is a guest post by Max Hirschhorn,who is currently an intern at MongoDB. About the F# programming language F# is a multi-paradigm language built on the .NET framework. It isfunctional-first and prefers immutability, but also supportso
This is a guest post by Max Hirschhorn, who is currently an intern at MongoDB.
About the F# programming language
F# is a multi-paradigm language built on the .NET framework. It is functional-first and prefers immutability, but also supports object-oriented and imperative programming styles.
Also, F# is a statically-typed language with a type inference system. It has a syntax similar to Ocaml, and draws upon ideas from other functional programming languages such as Erlang and Haskell.
Using the existing .NET driver
The existing .NET driver is compatible with F#, but is not necessarily written in a way that is idiomatic to use from F#.
Part of the reason behind this is that everything in F# is explicit. For example, consider the following example interface and implementing class.
[] type I = abstract Foo : unit -> string type C() = interface I with member __.Foo () = "bar" // example usage let c = C() (c :> I).Foo()
So in order to use any of the interface members, the class must be
upcasted using
the :>
operator. Note that this cast is still checked at compile-time.
In a similar vein, C# supports implicit
operators,
which the BSON library uses for converting between a primitive value
and its BsonValue
equivalent, e.g.
new BsonDocument { { "price", 1.99 }, { "$or", new BsonDocument { { "qty", new BsonDocument { { "$lt", 20 } } }, { "sale", true } } } };
whereas F# does not. This requires the developer to explicitly
construct the appropriate type of BsonValue
, e.g.
BsonDocument([ BsonElement("price", BsonDouble(1.99)) BsonElement("$or", BsonArray([ BsonDocument("qty", BsonDocument("$lt", BsonInt32(20))) BsonDocument("sale", BsonBoolean(true)) ])) ])
with the query builder, we can hide the construction of BsonDocument
instances, e.g.
Query.And([ Query.EQ("price", BsonDouble(1.99)) Query.OR([ Query.LT("qty", BsonInt32(20)) Query.EQ("sale", BsonBoolean(true)) ]) ])
It is worth noting that the need to construct the BsonValue
instances
is completely avoided when using a typed QueryBuilder
.
type Item = { Price : float Quantity : int Sale : bool } let query = QueryBuilder() query.And([ query.EQ((fun item -> item.Price), 1.99) query.Or([ query.LT((fun item -> item.Quantity), 20) query.EQ((fun item -> item.Sale), true) ]) ])
What we are looking for is a solution that matches the brevity of F# code, offers type-safety if desired, and is easy to use from the language.
New features
The main focus of this project is to make writing queries against MongoDB as natural from the F# language as possible.
bson
quotations
We strive to make writing predicates as natural as possible by reusing as many of the existing operators as possible.
A taste
Consider the following query
{ price: 1.99, $or: [ { qty: { $lt: 20 } }, { sale: true } ] }
we could express this with a code quotation
bson x?price = 1.99 && (x?qty
or with type safety
bson x.Price = 1.99 && (x.Quantity
Breaking it down
The quotations are not actually executed, but instead are presented
as an abstract syntax tree (AST), from which an equivalent
BsonDocument
instance is constructed.
The ?
operator
The ?
operator is defined to allow for an unchecked comparison. The
F# language supports the ability to do a dynamic lookup (get) and
assignment (set) via the ?
and ? operators respectively, but does
not actually provide a implementation.
So, the F# driver defines the ?
operator as the value associated with
a field in a document casted to a fresh generic type.
// type signature: BsonDocument -> string -> 'a let (?) (doc : BsonDocument) (field : string) = unbox doc.[field]
and similarly defines the ? operator as the coerced assignment of a
generically typed value to the associated field in the document.
// type signature: BsonDocument -> string -> 'a -> unit let (? ignore
Queries
Unchecked expressions have the type signature
Expr<bsondocument> bool></bsondocument>
.
// $mod bson x?qty % 4 = 0 @>
Checked expressions have the type signature Expr bool>
.
// $mod bson x.Quantity % 4 = 0 @>
Updates
Unchecked expressions have the type signature
Expr<bsondocument> unit list></bsondocument>
. The reason for the list
in the
return type is to perform multiple update operations.
// $set bson [ x?qty // $inc bson [ x?qty
Mmm… sugar
A keen observer would notice that (+) 1
is not an int
, but actually
a function int -> int
. We are abusing the fact that type safety is
not enforced here by assigning the quantity field of the document to a
lambda expression, that takes a single parameter of the current value.
Note that
// $inc bson [ x?qty
is also valid.
Checked expressions either have the type signature
Expr unit list>
or Expr 'DocType>
,
depending on whether the document type has mutable fields (only matters
for record types).
// $set bson [ x.Quantity // $inc bson [ x.Quantity
mongo
expressions
Uses the monadic structure (computation expression) to define a pipeline of operations that are executed on each document in the collection.
Queries
let collection : IMongoCollection = ... mongo { for x in collection do where (x?price = 1.99 && (x?qty <p>or with a typed collection</p> <pre class="brush:php;toolbar:false"> let collection : IMongoCollection = ... mongo { for x in collection do where (x.price = 1.99 && (x.qty <h5 id="Updates">Updates</h5> <pre class="brush:php;toolbar:false"> let collection : IMongoCollection = ... mongo { for x in collection do update set x?price 0.99 inc x?qty 1 }
or with a typed collection
let collection : IMongoCollection = ... mongo { for x in collection do update set x.Price 0.99 inc x.Quantity 1 }
Serialization of F# data types
Now supports
- record types
- option types
- discriminated unions
Conclusion
Resources
The source code is available at GitHub. We absolutely encourage you to experiment with it and provide us feedback on the API, design, and implementation. Bug reports and suggestions for improvements are welcomed, as are pull requests.
Disclaimer. The API and implementation are currently subject to change at any time. You must not use this driver in production, as it is still under development and is in no way supported by MongoDB, Inc.
Acknowledgments
Many thanks to the guidance from the F# community on Twitter, and my mentors: Sridhar Nanjundeswaran, Craig Wilson, and Robert Stam. Also, a special thanks to Stacy Ferranti and Ian Whalen for overseeing the internship program.
原文地址:Enhancing the F# developer experience with MongoDB, 感谢原作者分享。

InnoDBBufferPool通过缓存数据和索引页来减少磁盘I/O,提升数据库性能。其工作原理包括:1.数据读取:从BufferPool中读取数据;2.数据写入:修改数据后写入BufferPool并定期刷新到磁盘;3.缓存管理:使用LRU算法管理缓存页;4.预读机制:提前加载相邻数据页。通过调整BufferPool大小和使用多个实例,可以优化数据库性能。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。 MySQL以其高性能、可扩展性和跨平台支持着称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL值得学习,因为它是强大的开源数据库管理系统,适用于数据存储、管理和分析。1)MySQL是关系型数据库,使用SQL操作数据,适合结构化数据管理。2)SQL语言是与MySQL交互的关键,支持CRUD操作。3)MySQL的工作原理包括客户端/服务器架构、存储引擎和查询优化器。4)基本用法包括创建数据库和表,高级用法涉及使用JOIN连接表。5)常见错误包括语法错误和权限问题,调试技巧包括检查语法和使用EXPLAIN命令。6)性能优化涉及使用索引、优化SQL语句和定期维护数据库。

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境