搜索
首页数据库mysql教程MySQL 中 Join 的基本实现原理

MySQL 中 Join 的基本实现原理

Jun 07, 2016 pm 04:31 PM
joinmysql原理只有基本实现

在 MySQL 中,只有一种 Join 算法,就是大名鼎鼎的 Nested Loop Join,他没有其他很多数据库所提供的 Hash Join,也没有 Sort Merge Join。顾名思义,Nested Loop Join 实际上就是通过驱动表的结果集作为循环基础数据,然后一条一条的通过该结果集中的数据作

在 MySQL 中,只有一种 Join 算法,就是大名鼎鼎的 Nested Loop Join,他没有其他很多数据库所提供的 Hash Join,也没有 Sort Merge Join。顾名思义,Nested Loop Join 实际上就是通过驱动表的结果集作为循环基础数据,然后一条一条的通过该结果集中的数据作为过滤条件到下一个表中查询数据,然后合并结果。如果还有第三个参与 Join,则再通过前两个表的 Join 结果集作为循环基础数据,再一次通过循环查询条件到第三个表中查询数据,如此往复。

还是通过示例和图解来说明吧,后面将通过我个人数据库测试环境中的一个 example(自行设计,非MySQL 自己提供) 数据库中的三个表的 Join 查询来进行示例。

注意:由于这里有些内容需要在MySQL 5.1.18之后的版本中才会体现出来,所以本测试的MySQL 版本为5.1.26

表结构:

sky@localhost : example11:09:32> showcreatetableuser_groupG
***************************
1.row ***************************
Table: user_group
CreateTable: CREATETABLE`user_group`(
`user_id`int(11)NOTNULL,
`group_id`int(11)NOTNULL,
`user_type`int(11)NOTNULL,
`gmt_create`datetimeNOTNULL,
`gmt_modified`datetimeNOTNULL,
`status`varchar(16)NOTNULL,
KEY`idx_user_group_uid`(`user_id`)
)ENGINE=MyISAMDEFAULTCHARSET=utf8
1rowinset(0.00sec)
 
sky@localhost : example11:10:32> showcreatetablegroup_messageG
***************************
1.row ***************************
Table: group_message
CreateTable: CREATETABLE`group_message`(
`id`int(11)NOTNULLAUTO_INCREMENT,
`gmt_create`datetimeNOTNULL,
`gmt_modified`datetimeNOTNULL,
`group_id`int(11)NOTNULL,
`user_id`int(11)NOTNULL,
`author`varchar(32)NOTNULL,
`subject`varchar(128)NOTNULL,
PRIMARYKEY(`id`),
KEY`idx_group_message_author_subject`(`author`,`subject`(16)),
KEY`idx_group_message_author`(`author`),
KEY`idx_group_message_gid_uid`(`group_id`,`user_id`)
)ENGINE=MyISAMAUTO_INCREMENT=97DEFAULTCHARSET=utf8
1rowinset(0.00sec)
 
sky@localhost : example11:10:43> showcreatetablegroup_message_contentG
***************************
1.row ***************************
Table: group_message_content
CreateTable: CREATETABLE`group_message_content`(
`group_msg_id`int(11)NOTNULL,
`content`textNOTNULL,
KEY`group_message_content_msg_id`(`group_msg_id`)
)ENGINE=MyISAMDEFAULTCHARSET=utf8
1rowinset(0.00sec)

使用Query如下:

selectm.subjectmsg_subject, c.contentmsg_content
fromuser_groupg,group_messagem,group_message_contentc
whereg.user_id = 1
andm.group_id = g.group_id
andc.group_msg_id = m.id

看看我们的 Query 的执行计划:

sky@localhost : example11:17:04> explainselectm.subjectmsg_subject, c.contentmsg_content
->
fromuser_groupg,group_messagem,group_message_contentc
->
whereg.user_id = 1
->
andm.group_id = g.group_id
->
andc.group_msg_id = m.idG
***************************
1.row ***************************
id: 1
select_type: SIMPLE
table: g
type: ref
possible_keys: user_group_gid_ind,user_group_uid_ind,user_group_gid_uid_ind
key: user_group_uid_ind
key_len: 4
ref: const
rows: 2
Extra:
***************************
2.row ***************************
id: 1
select_type: SIMPLE
table: m
type: ref
possible_keys: PRIMARY,idx_group_message_gid_uid
key: idx_group_message_gid_uid
key_len: 4
ref: example.g.group_id
rows: 3
Extra:
***************************
3.row ***************************
id: 1
select_type: SIMPLE
table: c
type: ref
possible_keys: idx_group_message_content_msg_id
key: idx_group_message_content_msg_id
key_len: 4
ref: example.m.id
rows: 2
Extra:

我们可以看出,MySQL Query Optimizer 选择了 user_group 作为驱动表,首先利用我们传入的条件 user_id 通过 该表上面的索引 user_group_uid_ind 来进行 const 条件的索引 ref 查找,然后以 user_group 表中过滤出来的结果集的 group_id 字段作为查询条件,对 group_message 循环查询,然后再通过 user_group 和 group_message 两个表的结果集中的? group_message 的 id 作为条件 与 group_message_content 的 group_msg_id 比较进行循环查询,才得到最终的结果。没啥特别的,后一个引用前一个的结果集作为条件,实现过程可以通过下图表示:

下面的我们调整一下 group_message_content 去掉上面的 idx_group_message_content_msg_id 这个索引,然后再看看会是什么效果:

sky@localhost : example11:25:36> dropindexidx_group_message_content_msg_idongroup_message_content;
QueryOK, 96rowsaffected(0.11sec)
 
sky@localhost : example10:21:06> explain
->
selectm.subjectmsg_subject, c.contentmsg_content
->
fromuser_groupg,group_messagem,group_message_contentc
->
whereg.user_id = 1
->
andm.group_id = g.group_id
->
andc.group_msg_id = m.idG
***************************
1.row ***************************
id: 1
select_type: SIMPLE
table: g
type: ref
possible_keys: idx_user_group_uid
key: idx_user_group_uid
key_len: 4
ref: const
rows: 2
Extra:
***************************
2.row ***************************
id: 1
select_type: SIMPLE
table: m
type: ref
possible_keys: PRIMARY,idx_group_message_gid_uid
key: idx_group_message_gid_uid
key_len: 4
ref: example.g.group_id
rows: 3
Extra:
***************************
3.row ***************************
id: 1
select_type: SIMPLE
table: c
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 96
Extra: Usingwhere; Usingjoinbuffer

我们看到不仅仅 group_message_content 表的访问从 ref 变成了 ALL,此外,在最后一行的 Extra信息从没有任何内容变成为? Using where; Using join buffer,也就是说,对于从 ref 变成 ALL 很容易理解,没有可以使用的索引的索引了嘛,当然得进行全表扫描了,Using where 也是因为变成全表扫描之后,我们需要取得的 content 字段只能通过对表中的数据进行 where 过滤才能取得,但是后面出现的 Using join buffer 是一个啥呢?

我们知道,MySQL 中有一个供我们设置的参数 join_buffer_size ,这里实际上就是使用到了通过该参数所设置的 Buffer 区域。那为啥之前的执行计划中没有用到呢?

实际上,Join Buffer 只有当我们的 Join 类型为 ALL(如示例中),index,rang 或者是 index_merge 的时候 才能够使用,所以,在我们去掉 group_message_content 表的 group_msg_id 字段的索引之前,由于 Join 是 ref 类型的,所以我们的执行计划中并没有看到有使用 Join Buffer。

当我们使用了 Join Buffer 之后,我们可以通过下面的这张图片来表示 Join 完成过程:
nested_join_with_buffer

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL与Sqlite有何不同?MySQL与Sqlite有何不同?Apr 24, 2025 am 12:12 AM

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是什么?它们如何提高性能?MySQL中的索引是什么?它们如何提高性能?Apr 24, 2025 am 12:09 AM

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

说明如何使用MySQL中的交易来确保数据一致性。说明如何使用MySQL中的交易来确保数据一致性。Apr 24, 2025 am 12:09 AM

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。

在哪些情况下,您可以选择PostgreSQL而不是MySQL?在哪些情况下,您可以选择PostgreSQL而不是MySQL?Apr 24, 2025 am 12:07 AM

选择PostgreSQL而非MySQL的场景包括:1)需要复杂查询和高级SQL功能,2)要求严格的数据完整性和ACID遵从性,3)需要高级空间功能,4)处理大数据集时需要高性能。PostgreSQL在这些方面表现出色,适合需要复杂数据处理和高数据完整性的项目。

如何保护MySQL数据库?如何保护MySQL数据库?Apr 24, 2025 am 12:04 AM

MySQL数据库的安全可以通过以下措施实现:1.用户权限管理:通过CREATEUSER和GRANT命令严格控制访问权限。2.加密传输:配置SSL/TLS确保数据传输安全。3.数据库备份和恢复:使用mysqldump或mysqlpump定期备份数据。4.高级安全策略:使用防火墙限制访问,并启用审计日志记录操作。5.性能优化与最佳实践:通过索引和查询优化以及定期维护兼顾安全和性能。

您可以使用哪些工具来监视MySQL性能?您可以使用哪些工具来监视MySQL性能?Apr 23, 2025 am 12:21 AM

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL与SQL Server有何不同?MySQL与SQL Server有何不同?Apr 23, 2025 am 12:20 AM

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在哪些情况下,您可以选择SQL Server而不是MySQL?在哪些情况下,您可以选择SQL Server而不是MySQL?Apr 23, 2025 am 12:20 AM

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!