搜索
首页数据库mysql教程大数据架构hadoop

大数据架构hadoop

Jun 07, 2016 pm 04:31 PM
hadoop摘要数据数据挖掘架构

摘要: Admaster数据挖掘总监 随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求。 随着互联网、

摘要:Admaster数据挖掘总监 随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求。

随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求。

Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。

1. ?大数据分析大分类

Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。

  • 按照数据分析的实时性,分为实时数据分析和离线数据分析两种。

实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。

对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。

  • 按照大数据的数据量,分为内存级别、BI级别、海量级别三种。

这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。


图1 用于实时分析的MongoDB架构

MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。

此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的

应用。

BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。

海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapReduce进行分析。本文稍后将主要介绍Hadoop上基于MapReduce的一个多维数据分析平台。

  • 数据分析的算法复杂度

根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。

还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。

而大多数统计分析,机器学习问题可以用MapReduce算法改写。MapReduce目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。

2. ?面对大数据OLAP大一些问题


图2 RCFile的行列混合存

OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。

Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。

然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapReduce的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。

而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。

使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapReduce强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显著增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显著影响分析的性能。


图3 MDX→MapReduce简略示意图

因此,我们的大数据分析架构在这个巨大Cube的支持下,直接把维度和度量的生成交给业务人员,由业务人员自己定义好维度和度量之后,将业务的维度和度量直接翻译成MapReduce运行,并最终生成报表。可以简单理解为用户快速自定义的“MDX”(多维表达式,或者多维立方体查询)语言→MapReduce的转换工具。同时OLAP分析和报表结果的展示,依然兼容传统的BI和报表产品。如图3所示。

图3可以看出,在年收入上,用户可以自己定义子维度。另外,用户也可以在列上自定义维度,比如将性别和学历合并为一个维度。由于Hadoop数据的非结构化特征,维度可以根据业务需求任意地划分和重组。

而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。

3. ?一种Hadoop多维分析平台的架构

整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分? 析模块。如图4所示

图4 Hadoop多维分析平台架构图

数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。

数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。

并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Reduce,提交给Hadoop集群之后,生成报表供报表中心展示。

核心模块是将多维分析语言转化为MapReduce的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapReduce程序。核心模块的具体逻辑如图6所示。

图6中根据JobConf参数进行Map和Reduce类的拼装并不复杂,难点是很多实际问题很难通过一个MapReduce Job解决,必须通过多个MapReduce Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapReduce工作流的例子。

MapReduce的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。

? ? ? ?


图5 采集模块 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??图6 核心模块的逻辑





图7 MapReduce WorkFlow例子

结束语

当然,这样的多维分析架构也不是没有缺点。由于MapReduce本身就是以蛮力去扫描大部分数据进行计算,因此无法像传统BI产品一样对条件查询做优化,也没有缓存的概念。往往很多很小的查询需要“兴师动众”。尽管如此,开源的Hadoop还是解决了很多人在大数据下的分析问题,真可谓是“功德无量”。

Hadoop集群软硬件的花费极低,每GB存储和计算的成本是其他企业级产品的百分之一甚至千分之一,性能却非常出色。我们可以轻松地进行千亿乃至万亿数据级别的多维统计分析和机器学习。

6月29日的Hadoop Summit 2011上,Yahoo!剥离出一家专门负责Hadoop开发和运维的公司Hortonworks。Cloudera带来了大量的辅助工具,MapR带来了号称三倍于Hadoop MapReduce速度的并行计算平台。Hadoop必将很快迎来下一代产品,届时其必然拥有更强大的分析能力和更便捷的使用方式,从而真正轻松面对未来海量数据的挑战

作者:u011386690 发表于2013-7-15 11:20:00 原文链接

阅读:81 评论:0 查看评论

大数据架构hadoop

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL索引基数如何影响查询性能?MySQL索引基数如何影响查询性能?Apr 14, 2025 am 12:18 AM

MySQL索引基数对查询性能有显着影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL:新用户的资源和教程MySQL:新用户的资源和教程Apr 14, 2025 am 12:16 AM

MySQL学习路径包括基础知识、核心概念、使用示例和优化技巧。1)了解表、行、列、SQL查询等基础概念。2)学习MySQL的定义、工作原理和优势。3)掌握基本CRUD操作和高级用法,如索引和存储过程。4)熟悉常见错误调试和性能优化建议,如合理使用索引和优化查询。通过这些步骤,你将全面掌握MySQL的使用和优化。

现实世界Mysql:示例和用例现实世界Mysql:示例和用例Apr 14, 2025 am 12:15 AM

MySQL在现实世界的应用包括基础数据库设计和复杂查询优化。1)基本用法:用于存储和管理用户数据,如插入、查询、更新和删除用户信息。2)高级用法:处理复杂业务逻辑,如电子商务平台的订单和库存管理。3)性能优化:通过合理使用索引、分区表和查询缓存来提升性能。

MySQL中的SQL命令:实践示例MySQL中的SQL命令:实践示例Apr 14, 2025 am 12:09 AM

MySQL中的SQL命令可以分为DDL、DML、DQL、DCL等类别,用于创建、修改、删除数据库和表,插入、更新、删除数据,以及执行复杂的查询操作。1.基本用法包括CREATETABLE创建表、INSERTINTO插入数据和SELECT查询数据。2.高级用法涉及JOIN进行表联接、子查询和GROUPBY进行数据聚合。3.常见错误如语法错误、数据类型不匹配和权限问题可以通过语法检查、数据类型转换和权限管理来调试。4.性能优化建议包括使用索引、避免全表扫描、优化JOIN操作和使用事务来保证数据一致性

InnoDB如何处理酸合规性?InnoDB如何处理酸合规性?Apr 14, 2025 am 12:03 AM

InnoDB通过undolog实现原子性,通过锁机制和MVCC实现一致性和隔离性,通过redolog实现持久性。1)原子性:使用undolog记录原始数据,确保事务可回滚。2)一致性:通过行级锁和MVCC确保数据一致。3)隔离性:支持多种隔离级别,默认使用REPEATABLEREAD。4)持久性:使用redolog记录修改,确保数据持久保存。

MySQL的位置:数据库和编程MySQL的位置:数据库和编程Apr 13, 2025 am 12:18 AM

MySQL在数据库和编程中的地位非常重要,它是一个开源的关系型数据库管理系统,广泛应用于各种应用场景。1)MySQL提供高效的数据存储、组织和检索功能,支持Web、移动和企业级系统。2)它使用客户端-服务器架构,支持多种存储引擎和索引优化。3)基本用法包括创建表和插入数据,高级用法涉及多表JOIN和复杂查询。4)常见问题如SQL语法错误和性能问题可以通过EXPLAIN命令和慢查询日志调试。5)性能优化方法包括合理使用索引、优化查询和使用缓存,最佳实践包括使用事务和PreparedStatemen

MySQL:从小型企业到大型企业MySQL:从小型企业到大型企业Apr 13, 2025 am 12:17 AM

MySQL适合小型和大型企业。1)小型企业可使用MySQL进行基本数据管理,如存储客户信息。2)大型企业可利用MySQL处理海量数据和复杂业务逻辑,优化查询性能和事务处理。

幻影是什么读取的,InnoDB如何阻止它们(下一个键锁定)?幻影是什么读取的,InnoDB如何阻止它们(下一个键锁定)?Apr 13, 2025 am 12:16 AM

InnoDB通过Next-KeyLocking机制有效防止幻读。1)Next-KeyLocking结合行锁和间隙锁,锁定记录及其间隙,防止新记录插入。2)在实际应用中,通过优化查询和调整隔离级别,可以减少锁竞争,提高并发性能。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境