搜索
首页数据库mysql教程New Hash-based Sharding Feature in MongoDB 2.4

Lots of MongoDB users enjoy the flexibility of custom shard keys in organizing a sharded collection’s documents. For certain common workloads though, like key/value lookup, using the natural choice of _id as a shard key isn’t optimal bec

Lots of MongoDB users enjoy the flexibility of custom shard keys in organizing a sharded collection’s documents. For certain common workloads though, like key/value lookup, using the natural choice of _id as a shard key isn’t optimal because default ObjectId’s are ascending, resulting in poor write distribution. ?Creating randomized _ids or choosing another well-distributed field is always possible, but this adds complexity to an app and is another place where something could go wrong.

To help keep these simple workloads simple, in 2.4 MongoDB added the new Hash-based shard key feature. ?The idea behind Hash-based shard keys is that MongoDB will do the work to randomize data distribution for you, based on whatever kind of document identifier you like. ?So long as the identifier has a high cardinality, the documents in your collection will be spread evenly across the shards of your cluster. ?For heavy workloads with lots of individual document writes or reads (e.g. key/value), this is usually the best choice. ?For workloads where getting ranges of documents is more important (i.e. find recent documents from all users), other choices of shard key may be better suited.

Hash-based sharding in an existing collection

To start off with Hash-based sharding, you need the name of the collection you’d like to shard and the name of the hashed “identifier" field for the documents in the collection. ?For example, we might want to create a sharded “mydb.webcrawler" collection, where each document is usually found by a “url" field. ?We can populate the collection with sample data using:

shell$ wget http://en.wikipedia.org/wiki/Web_crawler -O web_crawler.html
shell$ mongo 
connecting to: /test
> use mydb
switched to db mydb
> cat("web_crawler.html").split("\n").forEach( function(line){
... var regex = /a href="http://blog.mongodb.org/post/\""([^\"]*)\"/; if (regex.test(line)) { db.webcrawler.insert({ "url" : regex.exec(line)[1] }); }})
> db.webcrawler.find()
...
{ "_id" : ObjectId("5162fba3ad5a8e56b7b36020"), "url" : "/wiki/OWASP" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b3603d"), "url" : "/wiki/Image_retrieval" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b3603e"), "url" : "/wiki/Video_search_engine" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b3603f"), "url" : "/wiki/Enterprise_search" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b36040"), "url" : "/wiki/Semantic_search" }
...

Just for this example, we multiply this data ~x2000 (otherwise we won’t get any pre-splitting in the collection because it’s too small):

> for (var i = 0; i 
<p><span>Next, we create a hashed index on this field:</span></p>
<pre class="brush:php;toolbar:false">> db.webcrawler.ensureIndex({ url : "hashed" })

As usual, the creation of the hashed index doesn’t prevent other types of indices from being created as well.

Then we shard the “mydb.webcrawler" collection using the same field as a Hash-based shard key:

> db.printShardingStatus(true)
--- Sharding Status ---
sharding version: {
  "_id" : 1,
  "version" : 3,
  "minCompatibleVersion" : 3,
  "currentVersion" : 4,
  "clusterId" : ObjectId("5163032a622c051263c7b8ce")
}
shards:
  {  "_id" : "test-rs0",  "host" : "test-rs0/nuwen:31100,nuwen:31101" }
  {  "_id" : "test-rs1",  "host" : "test-rs1/nuwen:31200,nuwen:31201" }
  {  "_id" : "test-rs2",  "host" : "test-rs2/nuwen:31300,nuwen:31301" }
  {  "_id" : "test-rs3",  "host" : "test-rs3/nuwen:31400,nuwen:31401" }
databases:
  {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
  {  "_id" : "mydb",  "partitioned" : true,  "primary" : "test-rs0" }
      mydb.webcrawler
          shard key: { "url" : "hashed" }
          chunks:
              test-rs0    4
          { "url" : { "$minKey" : 1 } } -->> { "url" : NumberLong("-4837773290201122847") } on : test-rs0 { "t" : 1, "i" : 3 }
          { "url" : NumberLong("-4837773290201122847") } -->> { "url" : NumberLong("-2329535691089872938") } on : test-rs0 { "t" : 1, "i" : 4 }
          { "url" : NumberLong("-2329535691089872938") } -->> { "url" : NumberLong("3244151849123193853") } on : test-rs0 { "t" : 1, "i" : 1 }
          { "url" : NumberLong("3244151849123193853") } -->> { "url" : { "$maxKey" : 1 } } on : test-rs0 { "t" : 1, "i" : 2 }

you can see that the chunk boundaries are 64-bit integers (generated by hashing the “url" field). ?When inserts or queries target particular urls, the query can get routed using the url hash to the correct chunk.

Sharding a new collection

Above we’ve sharded an existing collection, which will result in all the chunks of a collection initially living on the same shard. ?The balancer takes care of moving the chunks around, as usual, until we get an even distribution of data.

Much of the time though, it’s better to shard the collection before we add our data - this way MongoDB doesn’t have to worry about moving around existing data. ?Users of sharded collections are familiar with pre-splitting - where empty chunks can be quickly balanced around a cluster before data is added. ?When sharding a new collection using Hash-based shard keys, MongoDB will take care of the presplitting for you. Similarly sized ranges of the Hash-based key are distributed to each existing shard, which means that no initial balancing is needed (unless of course new shards are added).

Let’s see what happens when we shard a new collection webcrawler_empty the same way:

> sh.stopBalancer()
Waiting for active hosts...
Waiting for the balancer lock...
Waiting again for active hosts after balancer is off...
> db.webcrawler_empty.ensureIndex({ url : "hashed" })
> sh.shardCollection("mydb.webcrawler_empty", { url : "hashed" })
{ "collectionsharded" : "mydb.webcrawler_empty", "ok" : 1 }
> db.printShardingStatus(true)
--- Sharding Status ---
...
      mydb.webcrawler_empty
          shard key: { "url" : "hashed" }
          chunks:
              test-rs0    2
              test-rs1    2
              test-rs2    2
              test-rs3    2
          { "url" : { "$minKey" : 1 } } -->> { "url" : NumberLong("-6917529027641081850") } on : test-rs0 { "t" : 4, "i" : 2 }
          { "url" : NumberLong("-6917529027641081850") } -->> { "url" : NumberLong("-4611686018427387900") } on : test-rs0 { "t" : 4, "i" : 3 }
          { "url" : NumberLong("-4611686018427387900") } -->> { "url" : NumberLong("-2305843009213693950") } on : test-rs1 { "t" : 4, "i" : 4 }
          { "url" : NumberLong("-2305843009213693950") } -->> { "url" : NumberLong(0) } on : test-rs1 { "t" : 4, "i" : 5 }
          { "url" : NumberLong(0) } -->> { "url" : NumberLong("2305843009213693950") } on : test-rs2 { "t" : 4, "i" : 6 }
          { "url" : NumberLong("2305843009213693950") } -->> { "url" : NumberLong("4611686018427387900") } on : test-rs2 { "t" : 4, "i" : 7 }
          { "url" : NumberLong("4611686018427387900") } -->> { "url" : NumberLong("6917529027641081850") } on : test-rs3 { "t" : 4, "i" : 8 }
          { "url" : NumberLong("6917529027641081850") } -->> { "url" : { "$maxKey" : 1 } } on : test-rs3 { "t" : 4, "i" : 9 }

As you can see, the new empty collection is already well-distributed and ready to use. ?Be aware though - any balancing currently in progress can interfere with moving the empty initial chunks off the initial shard, balancing will take priority (hence the initial stopBalancer step). Like before, eventually the balancer will distribute all empty chunks anyway, but if you are preparing for a immediate data load it’s probably best to stop the balancer beforehand.

That’s it - you now have a pre-split collection on four shards using Hash-based shard keys. ?Queries and updates on exact urls go to randomized shards and are balanced across the cluster:

> db.webcrawler_empty.find({ url: "/wiki/OWASP" }).explain()
{
  "clusteredType" : "ParallelSort",
  "shards" : {
      "test-rs2/nuwen:31300,nuwen:31301" : [ ... ]
...

However, the trade-off with Hash-based shard keys is that ranged queries and multi-updates must hit all shards:

> db.webcrawler_empty.find({ url: /^\/wiki\/OWASP/ }).explain()
{
  "clusteredType" : "ParallelSort",
  "shards" : {
      "test-rs0/nuwen:31100,nuwen:31101" : [ ... ],
     "test-rs1/nuwen:31200,nuwen:31201" : [ ... ],
     "test-rs2/nuwen:31300,nuwen:31301" : [ ... ],
     "test-rs3/nuwen:31400,nuwen:31401" : [ ... ]
...

Manual chunk assignment and other caveats

The core benefits of the new Hash-based shard keys are:

  • Easy setup of randomized shard key

  • Automated pre-splitting of empty collections

  • Better distribution of chunks on shards for isolated document writes and reads

The standard split and moveChunk functions do work with Hash-based shard keys, so it’s still possible to balance your collection’s chunks in any way you like. ?However, the usual “find” mechanism used to select chunks can behave a bit unexpectedly since the specifier is a document which is hashed to get the containing chunk. ?To keep things simple, just use the new “bounds” parameter when manually manipulating chunks of hashed collections (or all collections, if you prefer):

> use admin
> db.runCommand({ split : "mydb.webcrawler_empty", bounds : [{ "url" : NumberLong("2305843009213693950") }, { "url" : NumberLong("4611686018427387900") }] })
> db.runCommand({ moveChunk : "mydb.webcrawler_empty", bounds : [{ "url" : NumberLong("2305843009213693950") }, { "url" : NumberLong("4611686018427387900") }], to : "test-rs3" })

There are a few other caveats as well - in particular with tag-aware sharding. ?Tag-aware sharding is a feature we released in MongoDB 2.2, which allows you to attach labels to a subset of shards in a cluster. This is valuable for “pinning" collection data to particular shards (which might be hosted on more powerful hardware, for example). ?You can also tag ranges of a collection differently, such that a collection sharded by { “countryCode" : 1 } would have chunks only on servers in that country.

Hash-based shard keys are compatible with tag-aware sharding. ?As in any sharded collection, you may assign chunks to specific shards, but since the chunk ranges are based on the value of the randomized hash of the shard key instead of the shard key itself, this is usually only useful for tagging the whole range to a specific set of shards:

> sh.addShardTag("test-rs2", "DC1")
sh.addShardTag("test-rs3", "DC1")

The above commands assign a hypothetical data center tag “DC1” to shards -rs2 and -rs3, which could indicate that -rs2 and -rs3 are in a particular location. ?Then, by running:

> sh.addTagRange("mydb.webcrawler_empty", { url : MinKey }, { url : MaxKey }, "DC1" )

we indicate to the cluster that the mydb.webcrawler_empty collection should only be stored on “DC1” shards. ?After letting the balancer work:

> db.printShardingStatus(true)
--- Sharding Status ---
...
      mydb.webcrawler_empty
          shard key: { "url" : "hashed" }
          chunks:
              test-rs2    4
              test-rs3    4
          { "url" : { "$minKey" : 1 } } -->> { "url" : NumberLong("-6917529027641081850") } on : test-rs2 { "t" : 5, "i" : 0 }
          { "url" : NumberLong("-6917529027641081850") } -->> { "url" : NumberLong("-4611686018427387900") } on : test-rs3 { "t" : 6, "i" : 0 }
          { "url" : NumberLong("-4611686018427387900") } -->> { "url" : NumberLong("-2305843009213693950") } on : test-rs2 { "t" : 7, "i" : 0 }
          { "url" : NumberLong("-2305843009213693950") } -->> { "url" : NumberLong(0) } on : test-rs3 { "t" : 8, "i" : 0 }
          { "url" : NumberLong(0) } -->> { "url" : NumberLong("2305843009213693950") } on : test-rs2 { "t" : 4, "i" : 6 }
          { "url" : NumberLong("2305843009213693950") } -->> { "url" : NumberLong("4611686018427387900") } on : test-rs2 { "t" : 4, "i" : 7 }
          { "url" : NumberLong("4611686018427387900") } -->> { "url" : NumberLong("6917529027641081850") } on : test-rs3 { "t" : 4, "i" : 8 }
          { "url" : NumberLong("6917529027641081850") } -->> { "url" : { "$maxKey" : 1 } } on : test-rs3 { "t" : 4, "i" : 9 }
           tag: DC1  { "url" : { "$minKey" : 1 } } -->> { "url" : { "$maxKey" : 1 } }

Again, it doesn’t usually make a lot of sense to tag anything other than the full hashed shard key collection to particular shards - by design, there’s no real way to know or control what data is in what range.

Finally, remember that Hash-based shard keys can (right now) only distribute documents based on the value of a single field. ?So, continuing the example above, it isn’t directly possible to use “url" + “timestamp" as a Hash-based shard key without storing the combination in a single field in your application, for example:

url_and_ts : { url : <url>, timestamp : <timestamp> }</timestamp></url>

The sub-document will be hashed as a unit.

If you’re interested in learning more about Hash-based sharding, register for the Hash-based sharding feature demo on May 2.

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL中的存储过程是什么?MySQL中的存储过程是什么?May 01, 2025 am 12:27 AM

存储过程是MySQL中的预编译SQL语句集合,用于提高性能和简化复杂操作。1.提高性能:首次编译后,后续调用无需重新编译。2.提高安全性:通过权限控制限制数据表访问。3.简化复杂操作:将多条SQL语句组合,简化应用层逻辑。

查询缓存如何在MySQL中工作?查询缓存如何在MySQL中工作?May 01, 2025 am 12:26 AM

MySQL查询缓存的工作原理是通过存储SELECT查询的结果,当相同查询再次执行时,直接返回缓存结果。1)查询缓存提高数据库读取性能,通过哈希值查找缓存结果。2)配置简单,在MySQL配置文件中设置query_cache_type和query_cache_size。3)使用SQL_NO_CACHE关键字可以禁用特定查询的缓存。4)在高频更新环境中,查询缓存可能导致性能瓶颈,需通过监控和调整参数优化使用。

与其他关系数据库相比,使用MySQL的优点是什么?与其他关系数据库相比,使用MySQL的优点是什么?May 01, 2025 am 12:18 AM

MySQL被广泛应用于各种项目中的原因包括:1.高性能与可扩展性,支持多种存储引擎;2.易于使用和维护,配置简单且工具丰富;3.丰富的生态系统,吸引大量社区和第三方工具支持;4.跨平台支持,适用于多种操作系统。

您如何处理MySQL中的数据库升级?您如何处理MySQL中的数据库升级?Apr 30, 2025 am 12:28 AM

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

您可以使用MySQL的不同备份策略是什么?您可以使用MySQL的不同备份策略是什么?Apr 30, 2025 am 12:28 AM

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

什么是mySQL聚类?什么是mySQL聚类?Apr 30, 2025 am 12:28 AM

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

如何优化数据库架构设计以在MySQL中的性能?如何优化数据库架构设计以在MySQL中的性能?Apr 30, 2025 am 12:27 AM

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

您如何优化MySQL性能?您如何优化MySQL性能?Apr 30, 2025 am 12:26 AM

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境