周海汉/文 2013.4.2 可以将日期08/08/16 20:56:29从hbase log 转换成一个 timestamp, 操作如下: hbase(main):021:0 import java.text.SimpleDateFormat hbase(main):022:0 import java.text.ParsePosition hbase(main):023:0 SimpleDateFormat.new("yy/MM/dd
周海汉/文
2013.4.2
可以将日期’08/08/16 20:56:29′从hbase log 转换成一个 timestamp, 操作如下:
hbase(main):021:0> import java.text.SimpleDateFormat hbase(main):022:0> import java.text.ParsePosition hbase(main):023:0> SimpleDateFormat.new("yy/MM/dd HH:mm:ss").parse("08/08/16 20:56:29", ParsePosition.new(0)).getTime() => 1218920189000
也可以逆过来操作。
hbase(main):021:0> import java.util.Date hbase(main):022:0> Date.new(1218920189000).toString() => "Sat Aug 16 20:56:29 UTC 2008"
$ bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable [--starttime=X] [--endtime=Y] [--new.name=NEW] [--peer.adr=ADR] tablename
hbase(main):001:0> import java.text.SimpleDateFormat
=> Java::JavaText::SimpleDateFormat
hbase(main):002:0> import java.text.ParsePosition
=> Java::JavaText::ParsePosition
hbase(main):004:0> SimpleDateFormat.new(“yyyy/MM/dd HH:mm:ss”).parse(“2013/03/28 00:00:00″, ParsePosition.new(0)).getTime()
=> 1364400000000
hbase(main):005:0> SimpleDateFormat.new(“yyyy/MM/dd HH:mm:ss”).parse(“2013/03/28 00:00:10″, ParsePosition.new(0)).getTime()
=> 1364400010000
[hbase@h46 sh]$ hbase org.apache.hadoop.hbase.mapreduce.CopyTable
Usage: CopyTable [general options] [--starttime=X] [--endtime=Y] [--new.name=NEW] [--peer.adr=ADR]
导出部分数据到另一个表myolc,需先创建该表,也可以指定另一个集群:
--peer.adr=server1,server2,server3:2181:/hbase
[hbase@h46 hbase]$ hbase org.apache.hadoop.hbase.mapreduce.CopyTable –starttime=1364400000000 –endtime=1364400010000 –new.name=myolc online_count
导出实用工具可以将表的内容输出成HDFS的序列化文件,如下调用:
$ bin/hbase org.apache.hadoop.hbase.mapreduce.Export <tablename> <outputdir> [<versions> [<starttime> [<endtime>]]]</endtime></starttime></versions></outputdir></tablename>
导出2000秒数据
[hbase@h46 hbase]$ hbase org.apache.hadoop.hbase.mapreduce.Export online_count onlinecount 1 1364400000000 1364402000000
[hbase@h46 hbase]$ hadoop fs -ls /user/hbase/onlinecount
Found 3 items
-rw-r–r–?? 3 hbase supergroup????????? 0 2013-04-01 15:56 /user/hbase/onlinecount/_SUCCESS
drwxr-xr-x?? – hbase supergroup????????? 0 2013-04-01 15:55 /user/hbase/onlinecount/_logs
-rw-r–r–?? 3 hbase supergroup??????? 451 2013-04-01 15:56 /user/hbase/onlinecount/part-m-00000
导入实用工具可以加载导出的数据回到HBase,如下调用:
$ bin/hbase org.apache.hadoop.hbase.mapreduce.Import <tablename> <inputdir></inputdir></tablename>
[zhouhh@Hadoop48 ~]$ hadoop fs -put olc onlinecount
[zhouhh@Hadoop48 ~]$ hbase shell
hbase(main):001:0> create ‘online_count’,'info’
?[zhouhh@Hadoop48 ~]$ hbase org.apache.hadoop.hbase.mapreduce.Import online_count onlinecount
相关博文:
- hbase shell中timestamp转为可读格式
- hadoop 中的 ClassNotFoundException
- 从HDFS分析数据到HBase
原文地址:复制部分HBase表用于测试, 感谢原作者分享。

InnoDBBufferPool通过缓存数据和索引页来减少磁盘I/O,提升数据库性能。其工作原理包括:1.数据读取:从BufferPool中读取数据;2.数据写入:修改数据后写入BufferPool并定期刷新到磁盘;3.缓存管理:使用LRU算法管理缓存页;4.预读机制:提前加载相邻数据页。通过调整BufferPool大小和使用多个实例,可以优化数据库性能。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。 MySQL以其高性能、可扩展性和跨平台支持着称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL值得学习,因为它是强大的开源数据库管理系统,适用于数据存储、管理和分析。1)MySQL是关系型数据库,使用SQL操作数据,适合结构化数据管理。2)SQL语言是与MySQL交互的关键,支持CRUD操作。3)MySQL的工作原理包括客户端/服务器架构、存储引擎和查询优化器。4)基本用法包括创建数据库和表,高级用法涉及使用JOIN连接表。5)常见错误包括语法错误和权限问题,调试技巧包括检查语法和使用EXPLAIN命令。6)性能优化涉及使用索引、优化SQL语句和定期维护数据库。

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

SublimeText3汉化版
中文版,非常好用

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中