最近在研究Impala,还是先回顾下Hive的SQL执行流程吧。 Hive有三种用户接口: cli (Command line interface) bin/hive或bin/hive –service cli 命令行方式(默认) hive-server/hive-server2 bin/hive –service hiveserver 或bin/hive –service hiveserve
最近在研究Impala,还是先回顾下Hive的SQL执行流程吧。
Hive有三种用户接口:
cli (Command line interface) | bin/hive或bin/hive –service cli | 命令行方式(默认) |
hive-server/hive-server2 | bin/hive –service hiveserver 或bin/hive –service hiveserver2 | 通过JDBC/ODBC和Thrift访问(Impala通过这种方式借用hive-metastore) |
hwi (Hive web interface) | bin/hive –service hwi | 通过浏览器访问 |
在hive shell中输入“show tables;”实际执行的是:
bin/hadoop jar hive/lib/hive-cli-0.9.0.jar org.apache.hadoop.hive.cli.CliDriver -e 'SHOW TABLES;'
CLI入口函数:cli.CliDriver.main()
读入参数->建立SessionState并导入配置->处理输入文件中指令CliDriver.processFile();或交互型指令CliDriver.processLine()->解析输入CliDriver.processCmd()
(1) 如果是quit或者exit,退出
(2) 以source开头的,读取外部文件并执行文件中的HiveQL
(3) !开头的命令,执行操作系统命令(如!ls,列出当前目录的文件信息)
(4) list,列出jar/file/archive
(5) 其他命令,则生成调用相应的CommandProcessor处理,进入CliDriver.processLocalCmd()
下面看看CliDriver.processLocalCmd()这个函数:
set/dfs/add/delete指令交给指定的CommandProcessor处理,其余的交给org.apache.hadoop.hive.ql.Driver.run()处理
org.apache.hadoop.hive.ql.Driver类是查询的起点,run()方法会先后调用compile()和execute()两个函数来完成查询,所以一个command的查询分为compile和execute两个阶段。
Compile
(1)利用antlr生成的HiveLexer.java和HiveParser.java类,将HiveQL转换成抽象语法树(AST)。
首先使用antlr工具将srcqlsrcjavaorgapachehadoophiveqlparsehive.g编译成以下几个文件:HiveParser.java,?Hive.tokens,?Hive__.g,?HiveLexer.java
HiveLexer.java和HiveParser.java分别是词法和语法分析类文件,Hive__.g是HiveLexer.java对应的词法分析规范,Hive.tokens定义了词法分析后所有的token。
然后沿着“Driver.compile()->ParseDriver.parse(command, ctx)->HiveParserX.statement()->antlr中的API”这个调用关系把输入的HiveQL转化成ASTNode类型的语法树。HiveParserX是由antlr生成的HiveParser类的子类。
(2)利用对应的SemanticAnalyzer类,将AST树转换成Map-reduce task。主要分为三个步骤:
a) AST -> operator DAG
b) optimize operator DAG
c) oprator DAG -> Map-reduce task
首先接着上一步生成的语法树ASTNode,?SemanticAnalyzerFactory会根据ASTNode的token类型生成不同的SemanticAnalyzer (所有这些SemanticAnalyzer都继承自BaseSemanticAnalyzer)
1) ExplainSemanticAnalyzer
2) LoadSemanticAnalyzer
3) ExportSemanticAnalyzer
4) DDLSemanticAnalyzer
5) FunctionSemanticAnalyzer
6) SemanticAnalyzer
然后调用BaseSemanticAnalyzer.analyze()->BaseSemanticAnalyzer. analyzeInternal()。
下面以最常见的select * from table类型的查询为例,进入的子类是SemanticAnalyzer. analyzeInternal(),这个函数的逻辑如下:
1) doPhase1():将sql语句中涉及到的各种信息存储起来,存到QB中去,留着后面用。
2) getMetaData():获取元数据信息,主要是sql中涉及到的 表 和 元数据 的关联
3) genPlan():生成operator tree/DAG
4) optimize:优化,对operator tree/DAG 进行一些优化操作,例如列剪枝等(目前只能做rule-based optimize,不能做cost-based optimize)
5) genMapRedTasks():将operator tree/DAG 通过一定的规则生成若干相互依赖的MR任务
Execute
将Compile阶段生成的task信息序列化到plan.xml,然后启动map-reduce,在configure时反序列化plan.xml
实例分析:
在hive中有这样一张表:
uid |
fruit_name |
count |
a |
apple |
5 |
a |
orange |
3 |
a |
apple |
2 |
b |
banana |
1 |
执行如下的查询:
SELECT uid, SUM(count) FROM logs GROUP BY uid
通过explain命令可以查看执行计划:
EXPLAIN SELECT uid, SUM(count) FROM logs GROUP BY uid;
依照hive.g的语法规则,生成AST如下:
ABSTRACT SYNTAX TREE: ( TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME logs))) ( TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) ( TOK_SELECT (TOK_SELEXPR (TOK_TABLE_OR_COL uid)) (TOK_SELEXPR (TOK_FUNCTION sum (TOK_TABLE_OR_COL count))) ) (TOK_GROUPBY (TOK_TABLE_OR_COL uid)) ) )
生成的执行计划operator tree/DAG如下:
STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Alias -> Map Operator Tree: logs TableScan // 扫描表 alias: logs Select Operator //选择字段 expressions: expr: uid type: string expr: count type: int outputColumnNames: uid, count Group By Operator //在map端先做一次聚合,减少shuffle数据量 aggregations: expr: sum(count) //聚合函数 bucketGroup: false keys: expr: uid type: string mode: hash outputColumnNames: _col0, _col1 Reduce Output Operator //输出key,value给reduce key expressions: expr: _col0 type: string sort order: + Map-reduce partition columns: expr: _col0 type: string tag: -1 value expressions: expr: _col1 type: bigint Reduce Operator Tree: Group By Operator aggregations: expr: sum(VALUE._col0) //聚合 bucketGroup: false keys: expr: KEY._col0 type: string mode: mergepartial outputColumnNames: _col0, _col1 Select Operator //选择字段 expressions: expr: _col0 type: string expr: _col1 type: bigint outputColumnNames: _col0, _col1 File Output Operator //输出到文件 compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0 Fetch Operator limit: -1
Hive优化策略:
1. 去除查询中不需要的column
2. Where条件判断等在TableScan阶段就进行过滤
3. 利用Partition信息,只读取符合条件的Partition
4. Map端join,以大表作驱动,小表载入所有mapper内存中
5. 调整Join顺序,确保以大表作为驱动表
6. 对于数据分布不均衡的表Group by时,为避免数据集中到少数的reducer上,分成两个map-reduce阶段。第一个阶段先用Distinct列进行shuffle,然后在reduce端部分聚合,减小数据规模,第二个map-reduce阶段再按group-by列聚合。
7. 在map端用hash进行部分聚合,减小reduce端数据处理规模。
参考文献:
http://fatkun.com/2013/01/hive-group-by.html
原文地址:Hive SQL解析/执行计划生成流程分析, 感谢原作者分享。

本篇文章给大家带来了关于SQL的相关知识,其中主要介绍了SQL Server使用CROSS APPLY与OUTER APPLY实现连接查询的方法,文中通过示例代码介绍的非常详细,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于SQL server的相关知识,其中主要介绍了SQL SERVER没有自带的解析json函数,需要自建一个函数(表值函数),下面介绍关于SQL Server解析/操作Json格式字段数据的相关资料,希望对大家有帮助。

如何优化sql中的orderBy语句?下面本篇文章给大家介绍一下优化sql中orderBy语句的方法,具有很好的参考价值,希望对大家有所帮助。

本篇文章给大家带来了关于SQL server的相关知识,开窗函数也叫分析函数有两类,一类是聚合开窗函数,一类是排序开窗函数,下面这篇文章主要给大家介绍了关于SQL中开窗函数的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下。

本篇文章给大家带来了关于SQL server的相关知识,SQL Server数据库存在一个问题,如果你限制了它的日志文件的大小,那么当数据库日志达到这个大小的时候,数据库就会停止写入日志,下面这介绍了关于SqlServer创建自动收缩事务日志任务的相关资料,希望对大家有帮助。

linux运行sql文件命令是“psql -f test.sql”,其Linux运行sql脚本的方法是:1、使用shell工具登录到安装postgresql的服务器;2、编辑sql脚本内容;3、通过“psql -f test.sql”命令执行“test.sql”脚本即可。

本篇文章给大家带来了关于SQL的相关知识,其中主要介绍了SQL Server跨服务器操作数据库的图文方法,SQL Server Management Studio (SSMS) 是用于管理SQL Server 基础结构的集成环境,下面一起来看一下,希望对大家有帮助。

方案一:使用JDBCAPI中提供的Statement接口的execute()方法要在Java中校验SQL语句的合法性,可以使用JDBCAPI中提供的Statement接口的execute()方法。这个方法会尝试执行给定的SQL语句,如果SQL语句不合法,则会抛出一个SQLException异常。因此,我们可以利用这个异常来判断SQL语句的合法性。以下是一个简单的示例代码:importjava.sql.*;publicclassSQLValidator{publicstaticbooleanval


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版