最近给服务增加了一个cache_put_latency指标,加了之后,吓了一跳。发现往memcached put一个10KB左右的数据,latency居然有7ms左右,难于理解,于是花了一些精力找原因。我分别写了一个shell和C++的测试程序。 1、shell脚本使用nc发送set命令。 #/bin/env ba
最近给服务增加了一个cache_put_latency指标,加了之后,吓了一跳。发现往memcached put一个10KB左右的数据,latency居然有7ms左右,难于理解,于是花了一些精力找原因。我分别写了一个shell和C++的测试程序。
1、shell脚本使用nc发送set命令。
#/bin/env bash let s=1 let i=0 let len=8*1024 while true do if (( i >= $len )) then break fi str=${str}1 let i++ done let i=0 begin_time=`date +%s` while true do if (( i >= 1000 )) then break fi printf "set $i 0 0 $len\r\n${str}\r\n" | nc 10.234.4.24 11211 if [[ $? -eq 0 ]] then echo "echo key: $i" fi let i++ done end_time=`date +%s` let use_time=end_time-begin_time echo "set time consumed: $use_time" let i=0 begin_time=`date +%s` while true do if (( i >= 1000 )) then break fi printf "get $i\r\n" | nc 10.234.4.22 11211 > /dev/null 2>&1 let i++ done end_time=`date +%s` let use_time=end_time-begin_time echo "get time consumed: $use_time"
2、C++程序则通过libmemcached set。
#include <iostream> #include <map> #include <string> #include <sys> #include <time.h> #include <stdlib.h> #include "libmemcached/memcached.h" using namespace std; uint32_t item_size = 0; uint32_t loop_num = 0; bool single_server = false; std::string local_ip; std::map<:string uint32_t> servers; int64_t getCurrentTime() { struct timeval tval; gettimeofday(&tval, NULL); return (tval.tv_sec * 1000000LL + tval.tv_usec); } memcached_st* mc_init() { memcached_st * mc = memcached_create(NULL); if (mc == NULL) { cout ::iterator iter; for (iter = servers.begin(); iter != servers.end(); ++iter) { if (single_server && iter->first != local_ip) { continue; } memcached_return rc = memcached_server_add(mc, iter->first.c_str(), iter->second); if(rc != MEMCACHED_SUCCESS) { cout first first <p>测试发现二者的结果是相背的。shell脚本set 1000次8KB的item,只要3s左右,平均需要3ms。而C++版本则需要39s左右,平均耗时39ms。照理说shell脚本需要不断连接服务器和启动nc进程,应该更慢才对。我用ltrace跟踪了一下,发现8KB的数据需要发送两次,两次write都是非常快的,但是等memcached返回时用了很多时间,主要的时间就耗费在这个地方。</p> <pre class="brush:php;toolbar:false"> 23:32:37.069922 [0x401609] memcached_set(0x19076200, 0x7fffdad68560, 32, 0x1907a570, 8192 <unfinished ...> 23:32:37.070034 [0x3f280c5f80] SYS_write(3, "set 29 0 600 8192\r\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"..., 8196) = 8196 23:32:37.071657 [0x3f280c5f80] SYS_write(3, "aaaaaaaaaaaaaaa\r\n", 17) = 17 23:32:37.071741 [0x3f280c5f00] SYS_read(3, "STORED\r\n", 8196) = 8 (39ms) </unfinished>
和剑豪讨论下之后,剑豪马上去grep了一把代码,发现原来libmemcached居然有MEMCACHED_MAX_BUFFER这样一个常量,其值为8196。并且它还没有对应的memcached_behavior_set函数。在memcached_constants.h中将其直接改成81960,然后就欣喜地发现cache_put_latency从7ms降低到1ms左右。
问题完美虽然地解决了,但是意犹未尽,于是想搞明白为什么会出现这种奇怪的现象。瓶颈貌似在服务器端,于是对memcached做了一些修改。在状态切换的时候加上一个精确到微秒的时间。
static int64_t getCurrentTime() { struct timeval tval; gettimeofday(&tval, NULL); return (tval.tv_sec * 1000000LL + tval.tv_usec); } static void conn_set_state(conn *c, enum conn_states state) { assert(c != NULL); assert(state >= conn_listening && state state) { if (settings.verbose > 2) { fprintf(stderr, "%d: going from %s to %s, time: %lu\n", c->sfd, state_text(c->state), state_text(state), getCurrentTime()); } c->state = state; if (state == conn_write || state == conn_mwrite) { MEMCACHED_PROCESS_COMMAND_END(c->sfd, c->wbuf, c->wbytes); } } }
从打印的时间戳可以看出来,时间主要花在conn_nread状态处理代码中。最后定位到第二次read花费的时间非常多。
15: going from conn_waiting to conn_read, time: 1348466584440118 15: going from conn_read to conn_parse_cmd, time: 1348466584440155 NOT FOUND 98 >15 STORED 15: going from conn_nread to conn_write, time: 1348466584480099(36ms) 15: going from conn_write to conn_new_cmd, time: 1348466584480145 15: going from conn_new_cmd to conn_waiting, time: 1348466584480152
value的数据可能在conn_read中读完了,这个时候只需要memmove一下就好了。如果没有在conn_read状态中读完,那么就需要conn_nread自己来一次read了(因为套接字被设置成了异步,所以还可能需要多次read),关键就是这个read太慢了。
case conn_nread: if (c->rlbytes == 0) { complete_nread(c); break; } /* first check if we have leftovers in the conn_read buffer */ if (c->rbytes > 0) { int tocopy = c->rbytes > c->rlbytes ? c->rlbytes : c->rbytes; if (c->ritem != c->rcurr) { memmove(c->ritem, c->rcurr, tocopy); } c->ritem += tocopy; c->rlbytes -= tocopy; c->rcurr += tocopy; c->rbytes -= tocopy; if (c->rlbytes == 0) { break; } } /* now try reading from the socket */ res = read(c->sfd, c->ritem, c->rlbytes); if (res > 0) { pthread_mutex_lock(&c->thread->stats.mutex); c->thread->stats.bytes_read += res; pthread_mutex_unlock(&c->thread->stats.mutex); if (c->rcurr == c->ritem) { c->rcurr += res; } c->ritem += res; c->rlbytes -= res; break; }
折腾了好久,在libmemcached的io_flush函数前后也打了不少时间戳,发现libmemcached发送数据是非常快的。突然灵感闪现,我想起来了TCP_NODELAY这个参数,于是在libmemcached memcached_connect.c文件中的set_socket_options函数中增加了这个参数(事实上set_socket_options函数里面可以设置TCP_NODELAY,没有仔细看)。
int flag = 1; int error = setsockopt(ptr->fd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(flag) ); if (error == -1) { printf("Couldn't setsockopt(TCP_NODELAY)\n"); exit(-1); }else { printf("set setsockopt(TCP_NODELAY)\n"); }
在不改MEMCACHED_MAX_BUFFER的情况下,现在set 100KB的item也是一瞬间的事情了。不过新的困惑又出现了,Nagle算法什么情况会起作用呢?为什么第一个包没被缓存,第二个包一定会被缓存呢?
libmemcached发送一个set命令是分成三部分的,首先是header(set 0 0 600 8192\r\n,共18个字节),然后是value(8192个字节),最后是’\r\n’(两个字节),一共是8212个字节。memcached在conn_read状态一共能读取2048+2048+4096+8196=16KB的数据,因此对于8KB的数据是完全可以在conn_read状态读完的。通过在conn_read状态处理的代码中增加下面的打印语句可以发现有些情况下,conn_read最后一次只读取了4个字节(正常情况应该是2048+2048+4096+20),剩下的16个字节放到conn_nread中读了。
res = read(c->sfd, c->rbuf + c->rbytes, avail); if (res > 0) { char buf[10240] = {0}; sprintf(buf, "%.*s", res, c->rbuf + c->rbytes); printf("avail=%d, read=%d, str=%s\n", avail, res, buf);
未设置TCP_NODELAY选项时,使用netstat可以看到客户端socket的Send-Q一直会维持在8214和8215之间。
tcp 0 8215 10.232.42.91:59836 10.232.42.91:11211 ESTABLISHED 25800/t
设置TCP_NODELAY选项时,客户端socket的Send-Q就一直为0了。
tcp 0 0 10.232.42.91:59890 10.232.42.91:11211 ESTABLISHED 26554/t.quick
原文地址:libmemcached的MEMCACHED_MAX_BUFFER问题, 感谢原作者分享。

存储过程是MySQL中的预编译SQL语句集合,用于提高性能和简化复杂操作。1.提高性能:首次编译后,后续调用无需重新编译。2.提高安全性:通过权限控制限制数据表访问。3.简化复杂操作:将多条SQL语句组合,简化应用层逻辑。

MySQL查询缓存的工作原理是通过存储SELECT查询的结果,当相同查询再次执行时,直接返回缓存结果。1)查询缓存提高数据库读取性能,通过哈希值查找缓存结果。2)配置简单,在MySQL配置文件中设置query_cache_type和query_cache_size。3)使用SQL_NO_CACHE关键字可以禁用特定查询的缓存。4)在高频更新环境中,查询缓存可能导致性能瓶颈,需通过监控和调整参数优化使用。

MySQL被广泛应用于各种项目中的原因包括:1.高性能与可扩展性,支持多种存储引擎;2.易于使用和维护,配置简单且工具丰富;3.丰富的生态系统,吸引大量社区和第三方工具支持;4.跨平台支持,适用于多种操作系统。

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

禅工作室 13.0.1
功能强大的PHP集成开发环境

Atom编辑器mac版下载
最流行的的开源编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器