MySQL 以及 Python 实现排名窗口函数 大部分数据库都提供了窗口函数,比如RANK,ROW_NUMBER等等。 MySQL 这方面没有直接提供,但是可以变相的实现,我以前写了row_number 的实现,今天有时间把 rank 的实现贴出来。 这里,我用MySQL 以及Python 分别实现了rank
MySQL 以及 Python 实现排名窗口函数大部分数据库都提供了窗口函数,比如RANK,ROW_NUMBER等等。 MySQL 这方面没有直接提供,但是可以变相的实现,我以前写了row_number 的实现,今天有时间把 rank 的实现贴出来。
这里,我用MySQL 以及Python 分别实现了rank 窗口函数。
原始表信息:
t_girl=# \d group_concat; Table "ytt.group_concat" Column | Type | Modifiers ----------+-----------------------+----------- rank | integer | username | character varying(20) |
表数据
t_girl=# select * from group_concat; rank | username ------+---------- 100 | Lucy 127 | Lucy 146 | Lucy 137 | Lucy 104 | Lucy 121 | Lucy 136 | Lily 100 | Lily 100 | Lily 105 | Lily 136 | Lily 149 | ytt 116 | ytt 116 | ytt 149 | ytt 106 | ytt 117 | ytt (17 rows) Time: 0.638 ms
PostgreSQL 的rank 窗口函数示例:
t_girl=# select username,rank,rank() over(partition by username order by rank desc) as rank_cnt from group_concat; username | rank | rank_cnt ----------+------+---------- Lily | 136 | 1 Lily | 136 | 1 Lily | 105 | 3 Lily | 100 | 4 Lily | 100 | 4 Lucy | 146 | 1 Lucy | 137 | 2 Lucy | 127 | 3 Lucy | 121 | 4 Lucy | 104 | 5 Lucy | 100 | 6 ytt | 149 | 1 ytt | 149 | 1 ytt | 117 | 3 ytt | 116 | 4 ytt | 116 | 4 ytt | 106 | 6 (17 rows) Time: 131.150 ms
MySQL 提供了group_concat 聚合函数可以变相的实现:
mysql> select a.username, a.rank, find_in_set(a.rank,b.rank_gp) as rank_cnt from group_concat as a , (select username,group_concat(rank order by rank desc separator ',') as rank_gp from group_concat group by username ) b where a.username = b.username order by a.username asc,a.rank desc; +----------+------+----------+ | username | rank | rank_cnt | +----------+------+----------+ | Lily | 136 | 1 | | Lily | 136 | 1 | | Lily | 105 | 3 | | Lily | 100 | 4 | | Lily | 100 | 4 | | Lucy | 146 | 1 | | Lucy | 137 | 2 | | Lucy | 127 | 3 | | Lucy | 121 | 4 | | Lucy | 104 | 5 | | Lucy | 100 | 6 | | ytt | 149 | 1 | | ytt | 149 | 1 | | ytt | 117 | 3 | | ytt | 116 | 4 | | ytt | 116 | 4 | | ytt | 106 | 6 | +----------+------+----------+ 17 rows in set (0.02 sec)
当然了,如果MySQL SQL不太熟悉,可以用程序来处理,比如我下面用python 实现了rank 函数,执行结果如下:(脚本源代码最后)
>>> ================================ RESTART ================================ >>> username | rank | rank_cnt -------------------------------- ytt |149 |1 ytt |149 |1 ytt |117 |3 ytt |116 |4 ytt |116 |4 ytt |106 |6 Lucy |146 |1 Lucy |137 |2 Lucy |127 |3 Lucy |121 |4 Lucy |104 |5 Lucy |100 |6 Lily |136 |1 Lily |136 |2 Lily |105 |3 Lily |100 |4 Lily |100 |4 (17 Rows.) Time: 0.162 Seconds.
附上脚本代码:
from __future__ import print_function from datetime import date, datetime, timedelta import mysql.connector import time # Created by ytt 2014/5/14. # Rank function implement. def db_connect(is_true): cnx = mysql.connector.connect(host='192.168.1.131',port='3306',user='python_user', password='python_user',database='t_girl',autocommit=is_true) return cnx def db_rs_rank(c1 ='username desc' ,c2 = ' rank desc'): # c1: partition column. # c2: sort column. time_start = time.time() cnx = db_connect(True) rs = cnx.cursor() query0 = "select username,rank from group_concat order by " + c1 + ", " + c2 rs.execute(query0,multi=False) if rs.with_rows: rows = rs.fetchall() else: return "No rows affected." i = 0 j = 0 k = 1 result = [] field1_compare = rows[0][0] field2_compare = rows[0][1] while i <br><br><p><br></p>

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。

mySqlManagesCharacterSetsetSandCollationsyutusututf-8asthEdeFault,允许ConfigurationAtdataBase,table和columnlevels,AndrequiringCarefullageLignmentToavoidMismatches.1)setDefeaultCharactersetTercharactersetEtCollacterSeteTandColletationForAdataBase.2)conformentcollecharactersettersetertersetcollatertersetcollationcollation

MySQL触发器是与表相关联的自动执行的存储过程,用于在特定数据操作时执行一系列操作。1)触发器定义与作用:用于数据校验、日志记录等。2)工作原理:分为BEFORE和AFTER,支持行级触发。3)使用示例:可用于记录薪资变更或更新库存。4)调试技巧:使用SHOWTRIGGERS和SHOWCREATETRIGGER命令。5)性能优化:避免复杂操作,使用索引,管理事务。

在MySQL中创建和管理用户账户的步骤如下:1.创建用户:使用CREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';2.分配权限:使用GRANTSELECT,INSERT,UPDATEONmydatabase.TO'newuser'@'localhost';3.修正权限错误:使用REVOKEALLPRIVILEGESONmydatabase.FROM'newuser'@'localhost';然后重新分配权限;4.优化权限:使用SHOWGRA

MySQL适合快速开发和中小型应用,Oracle适合大型企业和高可用性需求。1)MySQL开源、易用,适用于Web应用和中小型企业。2)Oracle功能强大,适合大型企业和政府机构。3)MySQL支持多种存储引擎,Oracle提供丰富的企业级功能。

MySQL相比其他关系型数据库的劣势包括:1.性能问题:在处理大规模数据时可能遇到瓶颈,PostgreSQL在复杂查询和大数据处理上表现更优。2.扩展性:水平扩展能力不如GoogleSpanner和AmazonAurora。3.功能限制:在高级功能上不如PostgreSQL和Oracle,某些功能需要更多自定义代码和维护。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

WebStorm Mac版
好用的JavaScript开发工具