查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE '%parm1%'—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用。 解决办法: 其实只需要对该脚本略做改进,查询速度便会提高近百倍。改进方法如下: 修改前台程序——把查询条件的供应商
尽量避免在一个复杂查询里面使用 LIKE '%parm1%'—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用。
解决办法:
其实只需要对该脚本略做改进,查询速度便会提高近百倍。改进方法如下:
在做性能跟踪分析过程中,经常发现有不少后台程序的性能问题是因为缺少合适索引造成的,有些表甚至一个索引都没有。这种情况往往都是因为在设计表时,没去定义索引,而开发初期,由于表记录很少,索引创建与否,可能对性能没啥影响,开发人员因此也未多加重视。然一旦程序发布到生产环境,随着时间的推移,表记录越来越多。
这时缺少索引,对性能的影响便会越来越大了。
这个问题需要数据库设计人员和开发人员共同关注。
法则:不要在建立的索引的数据列上进行下列操作:
部分UPDATE、SELECT 语句 写得很复杂(经常嵌套多级子查询)——可以考虑适当拆成几步,先生成一些临时数据表,再进行关联操作。
同一个表的修改在一个过程里出现好几十次,如:
update table1 set col1=... where col2=...; update table1 set col1=... where col2=... ......
象这类脚本其实可以很简单就整合在一个UPDATE语句来完成(前些时候在协助xxx项目做性能问题分析时就发现存在这种情况)。
UNION 因为会将各查询子集的记录做比较,故比起UNION ALL ,通常速度都会慢上许多。一般来说,如果使用UNION ALL能满足要求的话,务必使用UNION ALL。还有一种情况大家可能会忽略掉,就是虽然要求几个子集的并集需要过滤掉重复记录,但由于脚本的特殊性,不可能存在重复记录,这时便应该使用UNION ALL,如xx模块的某个查询程序就曾经存在这种情况,见,由于语句的特殊性,在这个脚本中几个子集的记录绝对不可能重复,故可以改用UNION ALL)。
这个常识相信绝大部分开发人员都应该知道,但仍有不少人这么使用,我想其中一个最主要的原因可能是为了编写写简单而损害了性能,那就不可取了。
有大量的后台程序存在类似用法,如:
where trunc(create_date)=trunc(:date1)
虽然已对create_date 字段建了索引,但由于加了TRUNC,使得索引无法用上。此处正确的写法应该是
where create_date>=trunc(:date1) and create_date<?xml:namespace prefix = trunc( />< PRE></trunc(:date1)+1>
或者是
where create_date between trunc(:date1) and trunc(:date1)+1-1/(24*60*60)
注意:因between 的范围是个闭区间(greater than or equal to low value and less than or equal to high value.), 故严格意义上应该再减去一个趋于0的小数,这里暂且设置成减去1秒(1/(24*60*60)),如果不要求这么精确的话,可以略掉这步。
可以使用 exist 和not exist代替 in和not in。
可以使用表链接代替 exist。Having可以用where代替,如果无法代替可以分两步处理。
SELECT * FROM ORDERS WHERE CUSTOMER_NAME NOT IN (SELECT CUSTOMER_NAME FROM CUSTOMER)
优化如下
SELECT * FROM ORDERS WHERE CUSTOMER_NAME not exist (SELECT CUSTOMER_NAME FROM CUSTOMER)
例子使用:
SELECT emp.ename, emp.job FROM emp WHERE emp.empno = 7369;
不要使用:
SELECT emp.ename, emp.job FROM emp WHERE emp.empno = '7369'
在应用程序、包和过程中限制使用select * from table这种方式s。看下面例子
SELECT empno,ename,category FROM emp WHERE empno = '7369'
而不要使用
SELECT * FROM emp WHERE empno = '7369'
避免使用耗费资源的操作,带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎执行,耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序
慎重使用临时表可以极大的提高系统性能。