搜索
首页数据库mysql教程OLAP简介(结合个人工作)

OLTP和OLAP 传统的数据库系统都是OLTP,只能提供数据原始的操作。不支持分析工作。 OLTP系统::执行联机事务和查询处理。一般超市进销存系统,功能:注册,记账,库存和销售记录等等, OLAP系统:数据分析与决策服务,组织不同式数据,满足不同用户需求。 区

OLTP和OLAP
传统的数据库系统都是OLTP,只能提供数据原始的操作。不支持分析工作。

OLTP系统::执行联机事务和查询处理。一般超市进销存系统,功能:注册,记账,库存和销售记录等等,

OLAP系统:数据分析与决策服务,组织不同格式数据,满足不同用户需求。

区别:

面向性。OLTP面向顾客,就是操作员,如超市收银员,银行柜台人员。OLAP面向市场,用于数据分析,分析人员包括数据分析员,做出决策的业务经理,或者策略制定部分。

数据内容:OLTP当前数据。OLAP历史数据的汇总与聚集。

数据库设计:OLTP用ER模型和面向应用数据库。OLAP 用星型或雪花模型,面向主题数据库设计。

还有访问模式:操作事务与只读的分析计算的区别。

等等

多维数据模型:

数据立方体cube:

给定维度的每个子集产生一个cuboid(称为方体)。这样可以在不同粒度上的汇总级别或分组(group by),来显示数据,整体上方体的格成为cube。

最低层汇总的方体称为基本方体(basecuboid)。出现某一个维度上的汇总后,则为非基本方体。

汇总到最高层的数据称为顶点方体(apexcuboid),如0-d方体,that’s to say,所有维度汇总到一起只剩一个cuboid,不能再汇总了。

顶点方体是最高泛化的方体。基本方体是最低特殊化的方体。

粗细粒度是不同程度上的汇总,涉及操作:

上卷(roll up),供应商称之为上钻drillup,沿着维度的概念分层向上

下钻(drill down)沿着维度的概念分层向下,需找更细粒度的数据。

切片:固定某一维度的取值,抽取这一维度下的子集。

切块:由多个维度上选择多个取值,抽取其所映射的子立方体。

旋转rotate: 也叫pivot数轴变换,简单说,二维表中的行列转置。到三维以上复杂,不同数轴之间的位置变换。说的高大上叫数据的视图角度转变

概念分层:低层概念(如城市)映射到更高的层次概念(如国家)。从低到高叫泛化(generalize),从高到低叫特殊化(specialize)。

模式分层(schema hierarchy)概念分层为数据库模式中属性的全序或偏序。

集合分组分层(set-grouping hierarchy)给定维度的属性值的离散化或分组。如年龄age属性离散化为young、mid、old三个子集,分组group by sex的男女子集。

数据立方体的实现:

使用数据仓库的模型是多维模型,目前经常的有:

星型模型:一个大而全,且无冗余的事实表(fact);以及不同分析维度上的维度表(dimension)。维度表围绕事实表,通过每个维度自身的dimension key(所有可能范围内的取值)关联。

雪花模型:星型模型的进一步细化,即将其中包含多个值的维度表进行规范化的(就是将维度表包含的某个值提取出来,作为新的dimension表),以便减少冗余。

这样把数据进一步分解到附加表中,易于维护,省空间(防止维度灾难),但查询时需要更多关联操作,降低时效性。

事实星座模型(fact constellation)or 星系模式(galaxy schema):多个fact tableshare all dimesioms(共享维度表)。

比如我的设计的data warehouse。Workbench

Cube定义

Dimension定义

一般的data warehouse 都是用fact constellation。

指标Index

度量measure

维度灾难(curse of dimensionality),当维度过多(特征空间非常复杂),那么维度之间的关联计算就变得非常多,而维度概念分层会加重灾难。反应在cube中,就是不同维度的计算就会产生巨大的数据,就是预计算cube中所有的方体(子cube),存储空间是爆炸似增长。N维会有2n个子cube,加上概念分层Li,则方体总数

预计算:1不物化(no materialization)2全物化(full materialization)3部分物化(partial materialization)

OLTP和OLAP

OLTP系统::执行联机事务和查询处理。一般超市进销存系统,功能:注册,记账,库存和销售记录等等,

OLAP系统:数据分析与决策服务,组织不同格式数据,满足不同用户需求。

区别:

面向性。OLTP面向顾客,就是操作员,如超市收银员,银行柜台人员。OLAP面向市场,用于数据分析,分析人员包括数据分析员,做出决策的业务经理,或者策略制定部分。

数据内容:OLTP当前数据。OLAP历史数据的汇总与聚集。

数据库设计:OLTP用ER模型和面向应用数据库。OLAP 用星型或雪花模型,面向主题数据库设计。

还有访问模式:操作事务与只读的分析计算的区别。

等等

多维数据模型:

数据立方体cube:

给定维度的每个子集产生一个cuboid(称为方体)。这样可以在不同粒度上的汇总级别或分组(group by),来显示数据,整体上方体的格成为cube。

最低层汇总的方体称为基本方体(basecuboid)。出现某一个维度上的汇总后,则为非基本方体。

汇总到最高层的数据称为顶点方体(apexcuboid),如0-d方体,that’s to say,所有维度汇总到一起只剩一个cuboid,不能再汇总了。

顶点方体是最高泛化的方体。基本方体是最低特殊化的方体。

粗细粒度是不同程度上的汇总,涉及操作:

上卷(roll up),供应商称之为上钻drillup,沿着维度的概念分层向上

下钻(drill down)沿着维度的概念分层向下,需找更细粒度的数据。

切片:固定某一维度的取值,抽取这一维度下的子集。

切块:由多个维度上选择多个取值,抽取其所映射的子立方体。

旋转rotate: 也叫pivot数轴变换,简单说,二维表中的行列转置。到三维以上复杂,不同数轴之间的位置变换。说的高大上叫数据的视图角度转变

概念分层:低层概念(如城市)映射到更高的层次概念(如国家)。从低到高叫泛化(generalize),从高到低叫特殊化(specialize)。

模式分层(schema hierarchy)概念分层为数据库模式中属性的全序或偏序。

集合分组分层(set-grouping hierarchy)给定维度的属性值的离散化或分组。如年龄age属性离散化为young、mid、old三个子集,分组group by sex的男女子集。

数据立方体的实现:

使用数据仓库的模型是多维模型,目前经常的有:

星型模型:一个大而全,且无冗余的事实表(fact);以及不同分析维度上的维度表(dimension)。维度表围绕事实表,通过每个维度自身的dimension key(所有可能范围内的取值)关联。

雪花模型:星型模型的进一步细化,即将其中包含多个值的维度表进行规范化的(就是将维度表包含的某个值提取出来,作为新的dimension表),以便减少冗余。

这样把数据进一步分解到附加表中,易于维护,省空间(防止维度灾难),但查询时需要更多关联操作,降低时效性。

事实星座模型(fact constellation)or 星系模式(galaxy schema):多个fact tableshare all dimesioms(共享维度表)。

比如我的设计的data warehouse。Workbench

Cube定义

Dimension定义

一般的data warehouse 都是用fact constellation。

指标Index

度量measure

维度灾难(curse of dimensionality),当维度过多(特征空间非常复杂),那么维度之间的关联计算就变得非常多,而维度概念分层会加重灾难。反应在cube中,就是不同维度的计算就会产生巨大的数据,就是预计算cube中所有的方体(子cube),存储空间是爆炸似增长。N维会有2n个子cube,加上概念分层Li,则方体总数

预计算:1不物化(no materialization)2全物化(full materialization)3部分物化(partial materialization)

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何识别和优化MySQL中的慢速查询? (慢查询日志,performance_schema)如何识别和优化MySQL中的慢速查询? (慢查询日志,performance_schema)Apr 10, 2025 am 09:36 AM

要优化MySQL慢查询,需使用slowquerylog和performance_schema:1.启用slowquerylog并设置阈值,记录慢查询;2.利用performance_schema分析查询执行细节,找出性能瓶颈并优化。

MySQL和SQL:开发人员的基本技能MySQL和SQL:开发人员的基本技能Apr 10, 2025 am 09:30 AM

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。

描述MySQL异步主奴隶复制过程。描述MySQL异步主奴隶复制过程。Apr 10, 2025 am 09:30 AM

MySQL异步主从复制通过binlog实现数据同步,提升读性能和高可用性。1)主服务器记录变更到binlog;2)从服务器通过I/O线程读取binlog;3)从服务器的SQL线程应用binlog同步数据。

mysql:简单的概念,用于轻松学习mysql:简单的概念,用于轻松学习Apr 10, 2025 am 09:29 AM

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL:数据库的用户友好介绍MySQL:数据库的用户友好介绍Apr 10, 2025 am 09:27 AM

MySQL的安装和基本操作包括:1.下载并安装MySQL,设置根用户密码;2.使用SQL命令创建数据库和表,如CREATEDATABASE和CREATETABLE;3.执行CRUD操作,使用INSERT,SELECT,UPDATE,DELETE命令;4.创建索引和存储过程以优化性能和实现复杂逻辑。通过这些步骤,你可以从零开始构建和管理MySQL数据库。

InnoDB缓冲池如何工作,为什么对性能至关重要?InnoDB缓冲池如何工作,为什么对性能至关重要?Apr 09, 2025 am 12:12 AM

InnoDBBufferPool通过将数据和索引页加载到内存中来提升MySQL数据库的性能。1)数据页加载到BufferPool中,减少磁盘I/O。2)脏页被标记并定期刷新到磁盘。3)LRU算法管理数据页淘汰。4)预读机制提前加载可能需要的数据页。

MySQL:初学者的数据管理易用性MySQL:初学者的数据管理易用性Apr 09, 2025 am 12:07 AM

MySQL适合初学者使用,因为它安装简单、功能强大且易于管理数据。1.安装和配置简单,适用于多种操作系统。2.支持基本操作如创建数据库和表、插入、查询、更新和删除数据。3.提供高级功能如JOIN操作和子查询。4.可以通过索引、查询优化和分表分区来提升性能。5.支持备份、恢复和安全措施,确保数据的安全和一致性。

与MySQL中使用索引相比,全表扫描何时可以更快?与MySQL中使用索引相比,全表扫描何时可以更快?Apr 09, 2025 am 12:05 AM

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用