从传统数据库迁移到GP中一个重要的且经常被开发人员忽略的概念是数据分布,没有良好的设计表的分布键会导致严重的性能问题,以下函数将给开发人员及DBA检测一个表的数据倾斜情况。 -- Function: gpmg.data_skew(character varying) -- DROP FUNCTION gpmg.da
从传统数据库迁移到GP中一个重要的且经常被开发人员忽略的概念是数据分布,没有良好的设计表的分布键会导致严重的性能问题,以下函数将给开发人员及DBA检测一个表的数据倾斜情况。
-- Function: gpmg.data_skew(character varying) -- DROP FUNCTION gpmg.data_skew(character varying); CREATE OR REPLACE FUNCTION gpmg.data_skew(tablename character varying) RETURNS text AS $BODY$ --2014-05-26,Gtlions,收集和统计数据倾斜情况 declare v_func character varying(200)='gpmg.data_skew()'; v_begin_time timestamp; v_end_time timestamp; v_status int=0; v_msg text='Done.'; v_record record; v_id integer; v_rq timestamp; v_segs integer=64; v_totalnums bigint=0; v_maxskew numeric=0.0; v_minskew numeric=0.0; v_maxskew_seg varchar(20); v_minskew_seg varchar(20); v_maxrows bigint=0; v_minrows bigint=0; v_result varchar(2000); begin v_id=nextval('gpmg.commonseq'); v_rq=now(); v_begin_time=clock_timestamp(); v_result = 'GP hava '; select into v_segs count(*) segs from gp_segment_configuration where role='p' and content<>-1; v_result = v_result||v_segs||' instances, Standard skew is '||1.0/v_segs||'. '; -- bg1 segid, bg2 节点记录数量 execute 'insert into gpmg.commontab(seq,tabname,bg1,bg2) select '||v_id||','''||$1||''',gp_segment_id,count(*) segrownums from '||$1||' group by rollup(( gp_segment_id)) order by gp_segment_id'; select into v_segs,v_totalnums v_segs,max(bg2) from gpmg.commontab where seq=v_id and tabname=$1; --nm1 标准倾斜率, nm2 节点倾斜率, nm3 标准-节点倾斜率绝对值 update gpmg.commontab set nm1=1::numeric/v_segs,nm2=bg2::numeric/v_totalnums,nm3=abs(1::numeric/v_segs-bg2::numeric/v_totalnums) where seq=v_id and tabname=$1; select into v_maxskew,v_minskew max(nm2),min(nm2) from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null; select into v_maxskew_seg hostname from gp_segment_configuration where role='p' and content in (select bg1 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_maxskew limit 1); select into v_minskew_seg hostname from gp_segment_configuration where role='p' and content in (select bg1 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_minskew limit 1); select into v_maxrows bg2 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_maxskew limit 1; select into v_minrows bg2 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_minskew limit 1; v_result =v_result ||'You Table ['||$1||'] skew info: [table_totalrows:'||v_totalnums||', maxskew:seg-'||v_maxskew_seg||', rows-'||v_maxrows||' '||v_maxskew||', minskew:seg-'||v_minskew_seg||', rows-'||v_minrows||' '||v_minskew||']'; delete from gpmg.commontab where seq=v_id and tabname=$1; return v_result; v_end_time=clock_timestamp(); end; $BODY$ LANGUAGE plpgsql VOLATILE; ALTER FUNCTION gpmg.data_skew(character varying) OWNER TO gpadmin; GRANT EXECUTE ON FUNCTION gpmg.data_skew(character varying) TO public; GRANT EXECUTE ON FUNCTION gpmg.data_skew(character varying) TO gpadmin; bigdatagp=# select gpmg.data_skew('gpmg.manager_table'); data_skew ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------- GP hava 64 instances, Standard skew is 0.01562500000000000000. You Table [gpmg.manager_table] skew info: [table_totalrows:83, maxskew:seg-sdw16, rows-3 0.036144578313 25301205, minskew:seg-sdw2, rows-1 0.01204819277108433735] (1 row) bigdatagp=# select gpmg.data_skew('gpmg.func_log'); data_skew ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------- GP hava 64 instances, Standard skew is 0.01562500000000000000. You Table [gpmg.func_log] skew info: [table_totalrows:53708, maxskew:seg-sdw10, rows-907 0.016887614508 08073285, minskew:seg-sdw7, rows-773 0.01439264169211290683] (1 row) 2014-10-14 09:53:00
-EOF-

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA

MySQL在Web应用中的主要作用是存储和管理数据。1.MySQL高效处理用户信息、产品目录和交易记录等数据。2.通过SQL查询,开发者能从数据库提取信息生成动态内容。3.MySQL基于客户端-服务器模型工作,确保查询速度可接受。

构建MySQL数据库的步骤包括:1.创建数据库和表,2.插入数据,3.进行查询。首先,使用CREATEDATABASE和CREATETABLE语句创建数据库和表,然后用INSERTINTO语句插入数据,最后用SELECT语句查询数据。

MySQL适合初学者,因为它易用且功能强大。1.MySQL是关系型数据库,使用SQL进行CRUD操作。2.安装简单,需配置root用户密码。3.使用INSERT、UPDATE、DELETE、SELECT进行数据操作。4.复杂查询可使用ORDERBY、WHERE和JOIN。5.调试需检查语法,使用EXPLAIN分析查询。6.优化建议包括使用索引、选择合适数据类型和良好编程习惯。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Atom编辑器mac版下载
最流行的的开源编辑器

Dreamweaver Mac版
视觉化网页开发工具