搜索
首页数据库mysql教程数据挖掘算法之-关联规则挖掘(AssociationRule)(购物篮分析)

在各种数据挖掘算法中,关联规则挖掘算是比较重要的一种,尤其是受购物篮分析的影响,关联规则被应用到很多实际业务中,本文对关联规则挖掘做一个小的总结。 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描述的是在一个事物中物品间同时出现的

在各种数据挖掘算法中,关联规则挖掘算是比较重要的一种,尤其是受购物篮分析的影响,关联规则被应用到很多实际业务中,本文对关联规则挖掘做一个小的总结。 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描述的是在一个事物中物品间同时出现的规律的知识模式,现实生活中,比如超市购物时,顾客购买记录常常隐含着很多关联规则,比如购买圆珠笔的顾客中有65%也购买了笔记本,利用这些规则,商场人员可以很好的规划商品摆放问题; 为叙述方便,设R= { I1,I2 ......Im} 是一组物品集,W 是一组事务集。W 中的每个事务T 是一组物品,T是R的子集。假设有一个物品集A,一个事务T,关联规则是如下形式的一种蕴含:A→B,其中A、B 是两组物品,A属于I子集,B属于I子集。 在关联规则中设计4个常用关键指标 1.置信度(confidence)

定义:设W中支持物品集A的事务中,有c %的事务同时也支持物品集B,c %称为关联规则A→B 的可信度。

通俗解释:简单地说,可信度就是指在出现了物品集A 的事务T 中,物品集B 也同时出现的概率有多大。

实例说明:上面所举的圆珠笔和笔记本的例子,该关联规则的可信度就回答了这样一个问题:如果一个顾客购买了圆珠笔,那么他也购买笔记本的可能性有多大呢?在上述例子中,购买圆珠笔的顾客中有65%的人购买了笔记本, 所以可信度是65%。

概率描述:物品集A对物品集B的置信度confidence(A==>B)=P(A|B)

2.支持度(support)

定义:设W 中有s %的事务同时支持物品集A 和B,s %称为关联规则A→B 的支持度。支持度描述了A 和B 这两个物品集的并集C 在所有的事务中出现的概率有多大。

通俗解释:简单地说,A==>B的支持度就是指物品集A和物品集B同时出现的概率。

实例说明:某天共有1000 个顾客到商场购买物品,其中有150个顾客同时购买了圆珠笔和笔记本,那么上述的关联规则的支持度就是15%。

概率描述:物品集A对物品集B的支持度support(A==>B)=P(A n B)

3.期望置信度(Expected confidence

定义:设W 中有e %的事务支持物品集B,e %称为关联规则A→B 的期望可信度度。

通俗解释:期望可信度描述了在没有任何条件影响时,物品集B 在所有事务中出现的概率有多大。

实例说明:如果某天共有1000 个顾客到商场购买物品,其中有250 个顾客购买了圆珠笔,则上述的关联规则的期望可信度就是25 %。

概率描述:物品集A对物品集B的期望置信度为support(B)=P(B)

4.提升度(lift)

定义:提升度是可信度与期望可信度的比值

通俗解释:提升度反映了“物品集A的出现”对物品集B的出现概率发生了多大的变化。

实例说明:上述的关联规则的提升度=65%/25%=2.6

概率描述:物品集A对物品集B的期望置信度为lift(A==>B)=confidence(A==>B)/support(B)=p(B|A)/p(B)

总之,可信度是对关联规则的准确度的衡量,支持度是对关联规则重要性的衡量。支持度说明了这条规则在所有事务中有多大的代表性,显然支持度越大,关联规则越重要。有些关联规则可信度虽然很高,但支持度却很低,说明该关联规则实用的机会很小,因此也不重要。

在关联规则挖掘中,满足一定最小置信度以及支持度的集合成为频繁集(frequent itemset),或者强关联。关联规则挖掘则是一个寻找频繁集的过程。 

关联规则挖掘的相关算法

1.Apriori算法:使用候选项集找频繁项集

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。

可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。

2.基于划分的算法

Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。

3.FP-树频集算法 

针对Apriori算法的固有缺陷,J. Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL:初学者的基本技能MySQL:初学者的基本技能Apr 18, 2025 am 12:24 AM

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL:结构化数据和关系数据库MySQL:结构化数据和关系数据库Apr 18, 2025 am 12:22 AM

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL:解释的关键功能和功能MySQL:解释的关键功能和功能Apr 18, 2025 am 12:17 AM

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL的目的:与MySQL数据库进行交互SQL的目的:与MySQL数据库进行交互Apr 18, 2025 am 12:12 AM

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

初学者的MySQL:开始数据库管理初学者的MySQL:开始数据库管理Apr 18, 2025 am 12:10 AM

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA

MySQL的角色:Web应用程序中的数据库MySQL的角色:Web应用程序中的数据库Apr 17, 2025 am 12:23 AM

MySQL在Web应用中的主要作用是存储和管理数据。1.MySQL高效处理用户信息、产品目录和交易记录等数据。2.通过SQL查询,开发者能从数据库提取信息生成动态内容。3.MySQL基于客户端-服务器模型工作,确保查询速度可接受。

mysql:构建您的第一个数据库mysql:构建您的第一个数据库Apr 17, 2025 am 12:22 AM

构建MySQL数据库的步骤包括:1.创建数据库和表,2.插入数据,3.进行查询。首先,使用CREATEDATABASE和CREATETABLE语句创建数据库和表,然后用INSERTINTO语句插入数据,最后用SELECT语句查询数据。

MySQL:一种对数据存储的初学者友好方法MySQL:一种对数据存储的初学者友好方法Apr 17, 2025 am 12:21 AM

MySQL适合初学者,因为它易用且功能强大。1.MySQL是关系型数据库,使用SQL进行CRUD操作。2.安装简单,需配置root用户密码。3.使用INSERT、UPDATE、DELETE、SELECT进行数据操作。4.复杂查询可使用ORDERBY、WHERE和JOIN。5.调试需检查语法,使用EXPLAIN分析查询。6.优化建议包括使用索引、选择合适数据类型和良好编程习惯。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具