首页 >数据库 >mysql教程 >BP神经网络算法(2)

BP神经网络算法(2)

WBOY
WBOY原创
2016-06-07 15:49:251395浏览

// BpNet.h:interfacefortheBpclass. // // E-Mail:zengzhijun369@163.com /**/ ///////////////////////////////////////////////////////////////////// / #include stdafx.h #include BpNet.h #include math.h #ifdef_DEBUG #undef THIS_FILE static char

 

//BpNet.h: interface for the Bp class.
BP神经网络算法(2)
//
BP神经网络算法(2)
//E-Mail:zengzhijun369@163.com
BP神经网络算法(2)BP神经网络算法(2)
/**///////////////////////////////////////////////////////////////////////
BP神经网络算法(2)#include "stdafx.h"
BP神经网络算法(2)#include 
"BpNet.h"
BP神经网络算法(2)#include 
"math.h"
BP神经网络算法(2)
BP神经网络算法(2)#ifdef _DEBUG
BP神经网络算法(2)
#undef THIS_FILE
BP神经网络算法(2)
static char THIS_FILE[]=__FILE__;
BP神经网络算法(2)
#define new DEBUG_NEW
BP神经网络算法(2)
#endif
BP神经网络算法(2)
BP神经网络算法(2)BP神经网络算法(2)
/**///////////////////////////////////////////////////////////////////////
BP神经网络算法(2)// Construction/Destruction
BP神经网络算法(2)BP神经网络算法(2)
/**///////////////////////////////////////////////////////////////////////
BP神经网络算法(2)
BP神经网络算法(2)BpNet::BpNet()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){       
BP神经网络算法(2)    error
=1.0;
BP神经网络算法(2)    e
=0.0;
BP神经网络算法(2)    
BP神经网络算法(2)    rate_w
=0.05;  //权值学习率(输入层--隐含层)
BP神经网络算法(2)
    rate_w1=0.047//权值学习率 (隐含层--输出层)
BP神经网络算法(2)
    rate_b1=0.05//隐含层阀值学习率
BP神经网络算法(2)
    rate_b2=0.047//输出层阀值学习率
BP神经网络算法(2)
    error=1.0;
BP神经网络算法(2)    e
=0.0;
BP神经网络算法(2)    
BP神经网络算法(2)    rate_w
=0.05;  //权值学习率(输入层--隐含层)
BP神经网络算法(2)
    rate_w1=0.047//权值学习率 (隐含层--输出层)
BP神经网络算法(2)
    rate_b1=0.05//隐含层阀值学习率
BP神经网络算法(2)
    rate_b2=0.047//输出层阀值学习率
BP神经网络算法(2)
}

BP神经网络算法(2)
BP神经网络算法(2)BpNet::
~BpNet()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){
BP神经网络算法(2)    
BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
void winit(double w[],int sl)//权值初始化
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){int i;
BP神经网络算法(2)
double randx();
BP神经网络算法(2)BP神经网络算法(2)
for(i=0;isl;i++)BP神经网络算法(2){
BP神经网络算法(2)    
*(w+i)=0.2*randx();
BP神经网络算法(2)}

BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
double randx()//kqy error
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){double d;
BP神经网络算法(2)d
=(double) rand()/32767.0;
BP神经网络算法(2)
return d;
BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
void BpNet::init()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){
BP神经网络算法(2)    winit((
double*)w,innode*hidenode);
BP神经网络算法(2)    winit((
double*)w1,hidenode*outnode);
BP神经网络算法(2)    winit(b1,hidenode);
BP神经网络算法(2)    winit(b2,outnode);
BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
BP神经网络算法(2)
void BpNet::train(double p[trainsample][innode],double t[trainsample][outnode])
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){
BP神经网络算法(2)    
double pp[hidenode];//隐含结点的校正误差
BP神经网络算法(2)
    double qq[outnode];//希望输出值与实际输出值的偏差
BP神经网络算法(2)
    double yd[outnode];//希望输出值
BP神经网络算法(2)
    
BP神经网络算法(2)    
double x[innode]; //输入向量
BP神经网络算法(2)
    double x1[hidenode];//隐含结点状态值
BP神经网络算法(2)
    double x2[outnode];//输出结点状态值
BP神经网络算法(2)
    double o1[hidenode];//隐含层激活值
BP神经网络算法(2)
    double o2[hidenode];//输出层激活值
BP神经网络算法(2)
    for(int isamp=0;isamptrainsample;isamp++)//循环训练一次样品
BP神经网络算法(2)BP神经网络算法(2)
    BP神经网络算法(2)
BP神经网络算法(2)        
for(int i=0;iinnode;i++)
BP神经网络算法(2)            x[i]
=p[isamp][i];
BP神经网络算法(2)        
for(i=0;ioutnode;i++)
BP神经网络算法(2)            yd[i]
=t[isamp][i];
BP神经网络算法(2)        
BP神经网络算法(2)        
//构造每个样品的输入和输出标准
BP神经网络算法(2)
        for(int j=0;jhidenode;j++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            o1[j]
=0.0;
BP神经网络算法(2)            
BP神经网络算法(2)            
for(i=0;iinnode;i++)
BP神经网络算法(2)                o1[j]
=o1[j]+w[i][j]*x[i];//隐含层各单元输入激活值
BP神经网络算法(2)
            x1[j]=1.0/(1+exp(-o1[j]-b1[j]));//隐含层各单元的输出kqy1
BP神经网络算法(2)            
//    if(o1[j]+b1[j]>0) x1[j]=1;
BP神经网络算法(2)            
//else x1[j]=0;
BP神经网络算法(2)
        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(int k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            o2[k]
=0.0;
BP神经网络算法(2)            
BP神经网络算法(2)            
for(j=0;jhidenode;j++)
BP神经网络算法(2)                o2[k]
=o2[k]+w1[j][k]*x1[j];//输出层各单元输入激活值
BP神经网络算法(2)
            x2[k]=1.0/(1.0+exp(-o2[k]-b2[k]));//输出层各单元输出
BP神经网络算法(2)            
//    if(o2[k]+b2[k]>0) x2[k]=1;
BP神经网络算法(2)            
//    else x2[k]=0;
BP神经网络算法(2)
        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            e
=0.0;
BP神经网络算法(2)            qq[k]
=(yd[k]-x2[k])*x2[k]*(1.-x2[k]);//希望输出与实际输出的偏差
BP神经网络算法(2)
            e+=fabs(yd[k]-x2[k])*fabs(yd[k]-x2[k]);//计算均方差
BP神经网络算法(2)
            
BP神经网络算法(2)            
for(j=0;jhidenode;j++)
BP神经网络算法(2)                w1[j][k]
=w1[j][k]+rate_w1*qq[k]*x1[j];//下一次的隐含层和输出层之间的新连接权
BP神经网络算法(2)
            e=sqrt(e);
BP神经网络算法(2)            error
=e;
BP神经网络算法(2)        
BP神经网络算法(2)        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(j=0;jhidenode;j++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            pp[j]
=0.0;
BP神经网络算法(2)            
for(k=0;koutnode;k++)
BP神经网络算法(2)                pp[j]
=pp[j]+qq[k]*w1[j][k];
BP神经网络算法(2)            pp[j]
=pp[j]*x1[j]*(1-x1[j]);//隐含层的校正误差
BP神经网络算法(2)
            
BP神经网络算法(2)            
for(i=0;iinnode;i++)
BP神经网络算法(2)                w[i][j]
=w[i][j]+rate_w*pp[j]*x[i];//下一次的输入层和隐含层之间的新连接权
BP神经网络算法(2)
        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(k=0;koutnode;k++)
BP神经网络算法(2)            b2[k]
=b2[k]+rate_b2*qq[k];//下一次的隐含层和输出层之间的新阈值
BP神经网络算法(2)
        for(j=0;jhidenode;j++)
BP神经网络算法(2)            b1[j]
=b1[j]+rate_b1*pp[j];//下一次的输入层和隐含层之间的新阈值
BP神经网络算法(2)
        
BP神经网络算法(2)    }
//end isamp样品循环
BP神经网络算法(2)
    
BP神经网络算法(2)}

BP神经网络算法(2)BP神经网络算法(2)
/**////////////////////////////end train/////////////////////////////
BP神经网络算法(2)
BP神经网络算法(2)
/////////////////////////////////////////////////////////////////

BP神经网络算法(2)
BP神经网络算法(2)
double *BpNet::recognize(double *p)
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){   
BP神经网络算法(2)    
double x[innode]; //输入向量
BP神经网络算法(2)
    double x1[hidenode];//隐含结点状态值
BP神经网络算法(2)
    double x2[outnode];//输出结点状态值
BP神经网络算法(2)
    double o1[hidenode];//隐含层激活值
BP神经网络算法(2)
    double o2[hidenode];//输出层激活值
BP神经网络算法(2)

BP神经网络算法(2)    
for(int i=0;iinnode;i++)
BP神经网络算法(2)        x[i]
=p[i];
BP神经网络算法(2)    
for(int j=0;jhidenode;j++)
BP神经网络算法(2)BP神经网络算法(2)    
BP神经网络算法(2){
BP神经网络算法(2)        o1[j]
=0.0;
BP神经网络算法(2)        
BP神经网络算法(2)        
for(int i=0;iinnode;i++)
BP神经网络算法(2)            o1[j]
=o1[j]+w[i][j]*x[i];//隐含层各单元激活值
BP神经网络算法(2)
        x1[j]=1.0/(1.0+exp(-o1[j]-b1[j]));//隐含层各单元输出
BP神经网络算法(2)        
//if(o1[j]+b1[j]>0) x1[j]=1;
BP神经网络算法(2)        
//    else x1[j]=0;
BP神经网络算法(2)
    }

BP神经网络算法(2)    
BP神经网络算法(2)    
for(int k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)    
BP神经网络算法(2){
BP神经网络算法(2)        o2[k]
=0.0;
BP神经网络算法(2)        
for(int j=0;jhidenode;j++)
BP神经网络算法(2)            o2[k]
=o2[k]+w1[j][k]*x1[j];//输出层各单元激活值
BP神经网络算法(2)
        x2[k]=1.0/(1.0+exp(-o2[k]-b2[k]));//输出层各单元输出
BP神经网络算法(2)        
//if(o2[k]+b2[k]>0) x2[k]=1;
BP神经网络算法(2)        
//else x2[k]=0;
BP神经网络算法(2)
    }
 
BP神经网络算法(2)    
BP神经网络算法(2)    
for(k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)    
BP神经网络算法(2){
BP神经网络算法(2)        shuchu[k]
=x2[k];
BP神经网络算法(2)    }
 
BP神经网络算法(2)    
return shuchu;
BP神经网络算法(2)BP神经网络算法(2)}
/**/////////////////////////////end sim///////////////////////////
BP神经网络算法(2)
BP神经网络算法(2)
void BpNet::writetrain()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){//曾志军 for 2006.7
BP神经网络算法(2)
    AfxMessageBox("你还没有训练呢,训练后再写吧!请不要乱写,除非你认为这次训练是最好的,否则会覆盖我训练好的权值,那样你又要花时间训练!");
BP神经网络算法(2)    AfxMessageBox(
"你认为这次训练结果是最好的,就存下来,下次就不要花时间训练了!",MB_YESNO,NULL);
BP神经网络算法(2)    FILE 
*stream0;
BP神经网络算法(2)    FILE 
*stream1;
BP神经网络算法(2)    FILE 
*stream2;
BP神经网络算法(2)    FILE 
*stream3;
BP神经网络算法(2)

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn