分析 这是我第一次在ACM的题目中用OO的思想写的程序,看到标程,竟不谋而合,结构是类的。对正方形这个类分析,将会使问题变得简单,我觉得OO的分析和设计挺关键的,其实我一开始也没设计好,原先准备把7个bool函数当成类的成员方法,其实这个设计是不好的,
这是我第一次在ACM的题目中用OO的思想写的程序,看到标程,竟不谋而合,结构是类似的。对正方形这个类分析,将会使问题变得简单,我觉得OO的分析和设计挺关键的,其实我一开始也没设计好,原先准备把7个bool函数当成类的成员方法,其实这个设计是不好的,有点过了。其实应该是把旋转90度和轴对称这两个方法作为类的成员方法,这样main中调用就方便自如了。
最后,我觉得搞ACM,不仅是把题目A掉,同时也应注意程序的结构设计,因为”程序是给人看的“。
2013/3/31
关于顺时针旋转90度,怎么由原来的坐标得到转换后的坐标,可以用计算机图像学里二维变换的知识,将连续推广到离散的,如下图所示。
为了与二维数组对应,我将坐标系顺时针旋转了90度,这样就与二维数组的下标情况对应了,假设n为4。
关于变换矩阵,先把参考点移到原点,再顺时针旋转90度,最后移回原来参考点。复合变换矩阵:
MATLAB程序如下:
clc; clear all; syms x y n; P = [x y 1]; xF = (n - 1) / 2.0; % center = (xF yF) yF = xF; % theta = -pi / 2.0; Tt1 = [ 1 0 0; 0 1 0; -xF -yF 1 ]; % 精度有损失 % Tr = [ % cos(theta) sin(theta) 0; % -sin(theta) cos(theta) 0; % 0 0 1 % ]; Tr = [ 0 -1 0; 1 0 0; 0 0 1 ]; Tt2 = [ 1 0 0; 0 1 0; xF yF 1 ]; Pt = P * Tt1 * Tr * Tt2; display(P); display(Pt);变换结果
P = [ x, y, 1] Pt = [ y, n - x - 1, 1]
// #define ONLINE_JUDGE #define MY_DEBUG #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> #include <string> #include <algorithm> #include <cstdio> #include <cassert> using namespace std; class Square { private: typedef vector<char> vChar; typedef vector<vchar> vvChar; vvChar data; unsigned n; public: // 用边长来构造 Square (unsigned _n) : n(_n) {} Square rotateClockwise90() { Square tmp(n); for (unsigned int i = 0; i data[n - 1 - j][i]); } tmp.data.push_back(vcTmp); } return tmp; } Square rotateClockwise180() { return this->rotateClockwise90().rotateClockwise90(); } Square rotateClockwise270() { return this->rotateClockwise180().rotateClockwise90(); } Square reflecteHorizontal() { Square tmp(n); for (unsigned int i = 0; i data[i][n - j - 1]); } tmp.data.push_back(vcTmp); } return tmp; } bool operator==(const Square &other) const { if (this->n != other.n) { return false; } for (unsigned i = 0; i data[i][j] != other.data[i][j]) { return false; } } } return true; } friend istream & operator>>(istream& is, Square &s) { for (unsigned int i = 0; i > cTmp; vcTmp.push_back(cTmp); } s.data.push_back(vcTmp); } return is; } friend ostream & operator= 1) { cout = 1) { cout > sideLen; Square sa(sideLen); Square sb(sideLen); cin >> sa >> sb; #ifndef MY_DEBUG cout <p><br> </p> <p><br> </p> <p><br> </p> <p>附:</p> <h3>标程</h3> <p>注:它的旋转函数中坐标变换错了。</p> <pre class="brush:php;toolbar:false">#include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #define MAXN 10 typedef struct Board Board; struct Board { int n; char b[MAXN][MAXN]; }; /* rotate 90 degree clockwise: [r, c] -> [c, n+1 - r] */ Board rotate(Board b) { Board nb; int r, c; nb = b; for(r=0; r<b.n r for c nb.b b.b return nb reflect board horizontally:> [r, n-1 -c] */ Board reflect(Board b) { Board nb; int r, c; nb = b; for(r=0; r<b.n r for c nb.b b.b return nb non-zero if and only boards are equal int eqboard b board bb bb.n bb.b rdboard n b.n="n;" getc assert void main file change fin='fopen("transform.in",' fout='fopen("transform.out",' null fscanf rotate else reflect fprintf exit><br> <h3>题目</h3> <center> <strong><span>Transformations</span></strong><br> </center> <p>A square pattern of size N x N (1 </p> <ul> <li>#1: 90 Degree Rotation: The pattern was rotated clockwise 90 degrees.</li> <li>#2: 180 Degree Rotation: The pattern was rotated clockwise 180 degrees.</li> <li>#3: 270 Degree Rotation: The pattern was rotated clockwise 270 degrees.</li> <li>#4: Reflection: The pattern was reflected horizontally (turned into a mirror image of itself by reflecting around a vertical line in the middle of the image).</li> <li>#5: Combination: The pattern was reflected horizontally and then subjected to one of the rotations (#1-#3).</li> <li>#6: No Change: The original pattern was not changed.</li> <li>#7: Invalid Transformation: The new pattern was not obtained by any of the above methods.</li> </ul> <p>In the case that more than one transform could have been used, choose the one with the minimum number above.</p> <h3>PROGRAM NAME: transform</h3> <h3>INPUT FORMAT</h3> <table> <tbody> <tr> <td>Line 1:</td> <td>A single integer, N</td> </tr> <tr> <td>Line 2..N+1:</td> <td>N lines of N characters (each either `@' or `-'); this is the square before transformation</td> </tr> <tr> <td>Line N+2..2*N+1:</td> <td>N lines of N characters (each either `@' or `-'); this is the square after transformation</td> </tr> </tbody> </table> <h3>SAMPLE INPUT (file transform.in)</h3> <pre class="brush:php;toolbar:false">3 @-@ --- @@- @-@ @-- --@
1