概述 之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用SurfDescripto
概述
之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用SurfDescriptorExtractor计算特征点的特征向量,最后采用BruteForceMatcher暴力匹配法或者FlannBasedMatcher选择性匹配法(二者的不同)来进行特征点匹配。
实验所用环境是opencv2.4.0+vs2008+win7,需要注意opencv2.4.X版本中SurfFeatureDetector是包含在opencv2/nonfree/features2d.hpp中,BruteForceMatcher是包含在opencv2/legacy/legacy.hpp中,FlannBasedMatcher是包含在opencv2/features2d/features2d.hpp中。
BruteForce匹配法
首先使用BruteForceMatcher暴力匹配法,代码如下:
/** * @采用SURF算子检测特征点,对特征点进行特征提取,并使用BruteForce匹配法进行特征点的匹配 * @SurfFeatureDetector + SurfDescriptorExtractor + BruteForceMatcher * @author holybin */ #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/nonfree/features2d.hpp" //SurfFeatureDetector实际在该头文件中 #include "opencv2/legacy/legacy.hpp" //BruteForceMatcher实际在该头文件中 //#include "opencv2/features2d/features2d.hpp" //FlannBasedMatcher实际在该头文件中 #include "opencv2/highgui/highgui.hpp" using namespace cv; using namespace std; int main( int argc, char** argv ) { Mat src_1 = imread( "D:\\opencv_pic\\cat3d120.jpg", CV_LOAD_IMAGE_GRAYSCALE ); Mat src_2 = imread( "D:\\opencv_pic\\cat0.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !src_1.data || !src_2.data ) { cout keypoints_1, keypoints_2; detector.detect( src_1, keypoints_1 ); detector.detect( src_2, keypoints_2 ); cout > matcher; vector matches; matcher.match( descriptors_1, descriptors_2, matches ); cout<br> <p>实验结果:</p> <img src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141115151204375%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvaG9seWJpbg%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fu012564690%2Farticle%2Fdetails%2F17370511" class="lazy" alt="OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配" ><br> <p><span><br> </span></p> <h1 id="span-FLANN匹配法-span"><span>FLANN匹配法</span></h1> <p>使用暴力匹配的结果不怎么好,下面使用FlannBasedMatcher进行特征匹配,只保留好的特征匹配点,代码如下:</p> <pre class="brush:php;toolbar:false">/** * @采用SURF算子检测特征点,对特征点进行特征提取,并使用FLANN匹配法进行特征点的匹配 * @SurfFeatureDetector + SurfDescriptorExtractor + FlannBasedMatcher * @author holybin */ #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/nonfree/features2d.hpp" //SurfFeatureDetector实际在该头文件中 //#include "opencv2/legacy/legacy.hpp" //BruteForceMatcher实际在该头文件中 #include "opencv2/features2d/features2d.hpp" //FlannBasedMatcher实际在该头文件中 #include "opencv2/highgui/highgui.hpp" using namespace cv; using namespace std; int main( int argc, char** argv ) { Mat src_1 = imread( "D:\\opencv_pic\\cat3d120.jpg", CV_LOAD_IMAGE_GRAYSCALE ); Mat src_2 = imread( "D:\\opencv_pic\\cat0.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !src_1.data || !src_2.data ) { cout keypoints_1, keypoints_2; detector.detect( src_1, keypoints_1 ); detector.detect( src_2, keypoints_2 ); cout allMatches; matcher.match( descriptors_1, descriptors_2, allMatches ); cout maxDist ) maxDist = dist; } printf(" max dist : %f \n", maxDist ); printf(" min dist : %f \n", minDist ); //-- 过滤匹配点,保留好的匹配点(这里采用的标准:distance goodMatches; for( int i = 0; i (), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS //不显示未匹配的点 ); imshow("matching result", matchImg ); //-- 输出匹配点的对应关系 for( int i = 0; i <br> <p>实验结果:</p> <img src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141115151359125%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvaG9seWJpbg%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fu012564690%2Farticle%2Fdetails%2F17370511" class="lazy" alt="OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配" ><br> <p><br> </p> <p>从第二个实验结果可以看出,经过过滤之后特征点数目从49减少到33,匹配的准确度有所上升。当然也可以使用SIFT算子进行上述两种匹配实验,只需要将SurfFeatureDetector换成SiftFeatureDetector,将SurfDescriptorExtractor换成SiftDescriptorExtractor即可。</p> <p><br> </p> <h1 id="span-拓展-span"><span>拓展</span></h1> <p> 在FLANN匹配法的基础上,还可以进一步利用透视变换和空间映射找出已知物体(目标检测),具体来说就是利用findHomography函数利用匹配的关键点找出相应的变换,再利用perspectiveTransform函数映射点群。具体可以参考这篇文章:OpenCV中feature2D学习——SIFT和SURF算法实现目标检测。</p> <p><br> </p> </iostream></stdio.h>

1.图像金字塔理论基础图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。那我们为什么要做图像金字塔呢?这就是因为改变像素大小有时候并不会改变它的特征,比方说给你看1000万像素的图片,你能知道里面有个人,给你看十万像素的,你也能知道里面有个人,但是对计

一、项目效果二、核心流程1、openCV读取视频流、在每一帧图片上画一个矩形。2、使用mediapipe获取手指关键点坐标。3、根据手指坐标位置和矩形的坐标位置,判断手指点是否在矩形上,如果在则矩形跟随手指移动。三、代码流程环境准备:python:3.8.8opencv:4.2.0.32mediapipe:0.8.10.1注:1、opencv版本过高或过低可能出现一些如摄像头打不开、闪退等问题,python版本影响opencv可选择的版本。2、pipinstallmediapipe后可能导致op

如何使用PHP和OpenCV库实现视频处理?摘要:在现代科技应用中,视频处理已经成为一项重要的技术。本文将介绍如何使用PHP编程语言结合OpenCV库来实现一些基本的视频处理功能,并附上相应的代码示例。关键词:PHP、OpenCV、视频处理、代码示例引言:随着互联网的发展和智能手机的普及,视频内容已经成为人们生活中不可或缺的一部分。然而,要想实现视频的编辑和

计算机视觉(ComputerVision)是人工智能领域的重要分支之一,它可以使计算机能够自动地感知和理解图像、视频等视觉信号,实现人机交互以及自动化控制等应用场景。OpenCV(OpenSourceComputerVisionLibrary)是一个流行的开源计算机视觉库,在计算机视觉、机器学习、深度学习等领域都有广泛的应用。本文将介绍在PHP中使

如何使用PHP和OpenCV库实现图像锐化?概述:图像锐化是一种常见的图像处理技术,用于提高图像的清晰度和边缘的强度。在本文中,我们将介绍如何使用PHP和OpenCV库来实现图像锐化。OpenCV是一款功能强大的开源计算机视觉库,它提供了丰富的图像处理功能。我们将使用OpenCV的PHP扩展来实现图像锐化算法。步骤1:安装OpenCV和PHP扩展首先,我们需

图像分割与提取图像中将前景对象作为目标图像分割或者提取出来。对背景本身并无兴趣分水岭算法及GrabCut算法对图像进行分割及提取。用分水岭算法实现图像分割与提取分水岭算法将图像形象地比喻为地理学上的地形表面,实现图像分割,该算法非常有效。算法原理任何一幅灰度图像,都可以被看作是地理学上的地形表面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷。左图是原始图像,右图是其对应的“地形表面”。该过程将图像分成两个不同的集合:集水盆地和分水岭线。我们构建的堤坝就是分水岭线,也即对原始图像

1、滑块验证思路被测对象的滑块对象长这个样子。相对而言是比较简单的一种形式,需要将左侧的拼图通过下方的滑块进行拖动,嵌入到右侧空槽中,即完成验证。要自动化完成这个验证过程,关键点就在于确定滑块滑动的距离。根据上面的分析,验证的关键点在于确定滑块滑动的距离。但是看似简单的一个需求,完成起来却并不简单。如果使用自然逻辑来分析这个过程,可以拆解如下:1.定位到左侧拼图所在的位置,由于拼图的形状和大小固定,那么其实只需要定位其左边边界离背景图片的左侧距离。(实际在本例中,拼图的起始位置也是固定的,节省了

如何使用PHP和OpenCV库实现文本区域检测?OpenCV是一个开源的计算机视觉库,可以用于图像处理和机器视觉应用。在本文中,我们将介绍如何使用PHP和OpenCV库来实现文本区域检测的功能。要使用PHP进行图像处理,我们需要安装PHP的OpenCV扩展。可以通过运行以下命令来安装:sudoapt-getinstallphp7.4-devgitc


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。