搜索
首页数据库mysql教程【OpenCV2.4】SVM处理线性不可分的例子

【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】 目的 实际事物模型中,并非所有东西都是线性可分的。 需要寻找一种方法对线性不可分数据进行划分。 原理 ,我们推导出对于线性可分数据,最佳划分超平面应满足: 现在我们想引入

【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】

目的

  • 实际事物模型中,并非所有东西都是线性可分的。
  • 需要寻找一种方法对线性不可分数据进行划分。

原理

,我们推导出对于线性可分数据,最佳划分超平面应满足:

    【OpenCV2.4】SVM处理线性不可分的例子

现在我们想引入一些东西,来表示那些被错分的数据点(比如噪点),对划分的影响。

如何来表示这些影响呢?

被错分的点,离自己应当存在的区域越远,就代表了,这个点“错”得越严重。

所以我们引入【OpenCV2.4】SVM处理线性不可分的例子,为对应样本离同类区域的距离。

【OpenCV2.4】SVM处理线性不可分的例子

接下来的问题是,如何将这种错的程度,转换为和原模型相同的度量呢?

我们再引入一个常量C,表示【OpenCV2.4】SVM处理线性不可分的例子和原模型度量的转换关系,用C对【OpenCV2.4】SVM处理线性不可分的例子进行加权和,来表征错分点对原模型的影响,这样我们得到新的最优化问题模型:

    【OpenCV2.4】SVM处理线性不可分的例子

关于参数C的选择, 明显的取决于训练样本的分布情况。 尽管并不存在一个普遍的答案,但是记住下面几点规则还是有用的:

  • C比较大时分类错误率较小,但是间隔也较小。 在这种情形下, 错分类对模型函数产生较大的影响,既然优化的目的是为了最小化这个模型函数,那么错分类的情形必然会受到抑制。
  • C比较小时间隔较大,但是分类错误率也较大。 在这种情形下,模型函数中错分类之和这一项对优化过程的影响变小,优化过程将更加关注于寻找到一个能产生较大间隔的超平面。

 说白了,C的大小表征了,错分数据对原模型的影响程度。于是C越大,优化时越关注错分问题。反之越关注能否产生一个较大间隔的超平面。

开始使用

【OpenCV2.4】SVM处理线性不可分的例子

#include <iostream><span>
#include </span><opencv2><span>
#include </span><opencv2><span>
#include </span><opencv2>

<span>#define</span> NTRAINING_SAMPLES   100         <span>//</span><span> 每类训练样本的数量</span>
<span>#define</span> FRAC_LINEAR_SEP     0.9f        <span>//</span><span> 线性可分部分的样本组成比例</span>

<span>using</span> <span>namespace</span><span> cv;
</span><span>using</span> <span>namespace</span><span> std;

</span><span>int</span><span> main(){
    </span><span>//</span><span> 用于显示的数据</span>
    <span>const</span> <span>int</span> WIDTH = <span>512</span>, HEIGHT = <span>512</span><span>;
    Mat I </span>=<span> Mat::zeros(HEIGHT, WIDTH, CV_8UC3);

    </span><span>/*</span><span> 1. 随即产生训练数据 </span><span>*/</span><span>
    Mat trainData(</span><span>2</span>*NTRAINING_SAMPLES, <span>2</span><span>, CV_32FC1);
    Mat labels   (</span><span>2</span>*NTRAINING_SAMPLES, <span>1</span><span>, CV_32FC1);
    
    RNG rng(</span><span>100</span>); <span>//</span><span> 生成随即数

    </span><span>//</span><span> 设置线性可分的训练数据</span>
    <span>int</span> nLinearSamples = (<span>int</span>) (FRAC_LINEAR_SEP *<span> NTRAINING_SAMPLES);

    </span><span>//</span><span> 生成分类1的随机点</span>
    Mat trainClass = trainData.rowRange(<span>0</span><span>, nLinearSamples);
    </span><span>//</span><span> 点的x坐标在[0, 0.4)之间</span>
    Mat c = trainClass.colRange(<span>0</span>, <span>1</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span>), Scalar(<span>0.4</span> *<span> WIDTH));
    </span><span>//</span><span> 点的y坐标在[0, 1)之间</span>
    c = trainClass.colRange(<span>1</span>,<span>2</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT));

    </span><span>//</span><span> 生成分类2的随机点</span>
    trainClass = trainData.rowRange(<span>2</span>*NTRAINING_SAMPLES-nLinearSamples, <span>2</span>*<span>NTRAINING_SAMPLES);
    </span><span>//</span><span> 点的x坐标在[0.6, 1]之间</span>
    c = trainClass.colRange(<span>0</span> , <span>1</span><span>); 
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.6</span>*<span>WIDTH), Scalar(WIDTH));
    </span><span>//</span><span> 点的y坐标在[0, 1)之间</span>
    c = trainClass.colRange(<span>1</span>,<span>2</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT));

    </span><span>/*</span><span> 设置非线性可分的训练数据 </span><span>*/</span>

    <span>//</span><span> 生成分类1和分类2的随机点</span>
    trainClass = trainData.rowRange(  nLinearSamples, <span>2</span>*NTRAINING_SAMPLES-<span>nLinearSamples);
    </span><span>//</span><span> 点的x坐标在[0.4, 0.6)之间</span>
    c = trainClass.colRange(<span>0</span>,<span>1</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.4</span>*WIDTH), Scalar(<span>0.6</span>*<span>WIDTH)); 
    </span><span>//</span><span> 点的y坐标在[0, 1)之间</span>
    c = trainClass.colRange(<span>1</span>,<span>2</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT));
    
    </span><span>/*</span><span>*/</span><span>
    labels.rowRange(                </span><span>0</span>,   NTRAINING_SAMPLES).setTo(<span>1</span>);  <span>//</span><span> Class 1</span>
    labels.rowRange(NTRAINING_SAMPLES, <span>2</span>*NTRAINING_SAMPLES).setTo(<span>2</span>);  <span>//</span><span> Class 2</span>

    <span>/*</span><span> 设置支持向量机参数 </span><span>*/</span><span>
    CvSVMParams </span><span>params</span><span>;
    </span><span>params</span>.svm_type    =<span> SVM::C_SVC;
    </span><span>params</span>.C           = <span>0.1</span><span>;
    </span><span>params</span>.kernel_type =<span> SVM::LINEAR;
    </span><span>params</span>.term_crit   = TermCriteria(CV_TERMCRIT_ITER, (<span>int</span>)1e7, 1e-<span>6</span><span>);

    </span><span>/*</span><span> 3. 训练支持向量机 </span><span>*/</span><span>
    cout </span>"<span>Starting training process</span><span>"</span>  endl;
    CvSVM svm;
    svm.train(trainData, labels, Mat(), Mat(), <span>params</span><span>);
    cout </span>"<span>Finished training process</span><span>"</span>  endl;
    
    <span>/*</span><span> 4. 显示划分区域 </span><span>*/</span><span>
    Vec3b green(</span><span>0</span>,<span>100</span>,<span>0</span>), blue (<span>100</span>,<span>0</span>,<span>0</span><span>);
    </span><span>for</span> (<span>int</span> i = <span>0</span>; i i)
        <span>for</span> (<span>int</span> j = <span>0</span>; j j){
            Mat sampleMat = (Mat_float>(<span>1</span>,<span>2</span>)  i, j);
            <span>float</span> response =<span> svm.predict(sampleMat);

            </span><span>if</span>      (response == <span>1</span>)    I.at<vec3b>(j, i)  =<span> green;
            </span><span>else</span> <span>if</span> (response == <span>2</span>)    I.at<vec3b>(j, i)  =<span> blue;
        }

    </span><span>/*</span><span> 5. 显示训练数据 </span><span>*/</span>
    <span>int</span> thick = -<span>1</span><span>;
    </span><span>int</span> lineType = <span>8</span><span>;
    </span><span>float</span><span> px, py;
    </span><span>//</span><span> 分类1</span>
    <span>for</span> (<span>int</span> i = <span>0</span>; i i){
        px = trainData.atfloat>(i,<span>0</span><span>);
        py </span>= trainData.atfloat>(i,<span>1</span><span>);
        circle(I, Point( (</span><span>int</span>) px,  (<span>int</span>) py ), <span>3</span>, Scalar(<span>0</span>, <span>255</span>, <span>0</span><span>), thick, lineType);
    }
    </span><span>//</span><span> 分类2</span>
    <span>for</span> (<span>int</span> i = NTRAINING_SAMPLES; i 2*NTRAINING_SAMPLES; ++<span>i){
        px </span>= trainData.atfloat>(i,<span>0</span><span>);
        py </span>= trainData.atfloat>(i,<span>1</span><span>);
        circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>255</span>, <span>0</span>, <span>0</span><span>), thick, lineType);
    }

    </span><span>/*</span><span> 6. 显示支持向量 */</span>
    thick = <span>2</span><span>;
    lineType  </span>= <span>8</span><span>;
    </span><span>int</span> x     =<span> svm.get_support_vector_count();

    </span><span>for</span> (<span>int</span> i = <span>0</span>; i i)
    {
        <span>const</span> <span>float</span>* v =<span> svm.get_support_vector(i);
        circle( I,  Point( (</span><span>int</span>) v[<span>0</span>], (<span>int</span>) v[<span>1</span>]), <span>6</span>, Scalar(<span>128</span>, <span>128</span>, <span>128</span><span>), thick, lineType);
    }

    imwrite(</span><span>"</span><span>result.png</span><span>"</span>, I);                      <span>//</span><span> 保存图片</span>
    imshow(<span>"</span><span>SVM线性不可分数据划分</span><span>"</span>, I); <span>//</span><span> 显示给用户</span>
    waitKey(<span>0</span><span>);
}</span></vec3b></vec3b></opencv2></opencv2></opencv2></iostream>

【OpenCV2.4】SVM处理线性不可分的例子

设置SVM参数

这里的参数设置可以参考一下的API。

<span>CvSVMParams</span> <span>params</span><span>;</span>
<span>params</span><span>.</span><span>svm_type</span>    <span>=</span> <span>SVM</span><span>::</span><span>C_SVC</span><span>;</span>
<span>params</span><span>.</span><span>C</span>              <span>=</span> <span>0.1</span><span>;</span>
<span>params</span><span>.</span><span>kernel_type</span> <span>=</span> <span>SVM</span><span>::</span><span>LINEAR</span><span>;</span>
<span>params</span><span>.</span><span>term_crit</span>   <span>=</span> <span>TermCriteria</span><span>(</span><span>CV_TERMCRIT_ITER</span><span>,</span> <span>(</span><span>int</span><span>)</span><span>1e7</span><span>,</span> <span>1e-6</span><span>);</span>

 可以看到,这次使用的是C类支持向量分类机。其参数C的值为0.1。

 结果

  • 程序创建了一张图像,在其中显示了训练样本,其中一个类显示为浅绿色圆圈,另一个类显示为浅蓝色圆圈。
  • 训练得到SVM,并将图像的每一个像素分类。 分类的结果将图像分为蓝绿两部分,中间线就是最优分割超平面。由于样本非线性可分, 自然就有一些被错分类的样本。 一些绿色点被划分到蓝色区域, 一些蓝色点被划分到绿色区域。
  • 最后支持向量通过灰色边框加重显示。

【OpenCV2.4】SVM处理线性不可分的例子

被山寨的原文

Support Vector Machines for Non-Linearly Separable Data . OpenCV.org

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
使用PHP处理PDF文件的方法使用PHP处理PDF文件的方法Jun 19, 2023 pm 02:41 PM

PDF文件作为一种通用的文件格式,被广泛应用于各种应用场景,如电子书、报表、合同等等。在开发过程中,我们常常需要对PDF文件进行生成、编辑、读取等操作。而PHP作为一种脚本语言,也能够轻松地完成这些任务。本文将介绍使用PHP处理PDF文件的方法。一、生成PDF文件生成PDF文件有许多方法,其中最常见的是使用PDF库。PDF库是一种生成PDF文档的工具,它为

Python中的SVM实例Python中的SVM实例Jun 11, 2023 pm 08:42 PM

Python中的支持向量机(SupportVectorMachine,SVM)是一个强大的有监督学习算法,可以用来解决分类和回归问题。SVM在处理高维度数据和非线性问题的时候表现出色,被广泛地应用于数据挖掘、图像分类、文本分类、生物信息学等领域。在本文中,我们将介绍在Python中使用SVM进行分类的实例。我们将使用scikit-learn库中的SVM模

CakePHP如何处理文件上传?CakePHP如何处理文件上传?Jun 04, 2023 pm 07:21 PM

CakePHP是一个开源的Web应用程序框架,它基于PHP语言构建,可以简化Web应用程序的开发过程。在CakePHP中,处理文件上传是一个常见的需求,无论是上传头像、图片还是文档,都需要在程序中实现相应的功能。本文将介绍CakePHP中如何处理文件上传的方法和一些注意事项。在Controller中处理上传文件在CakePHP中,上传文件的处理通常在Cont

CakePHP如何处理多语言?CakePHP如何处理多语言?Jun 06, 2023 am 08:03 AM

CakePHP是一个流行的PHP开发框架,它可以帮助开发者快速构建高质量的Web应用程序。随着全球化的发展,越来越多的应用需要支持多语言,CakePHP也提供了相应的支持。本文将介绍CakePHP如何处理多语言。一、多语言支持多语言支持是CakePHP的一项重要功能。从版本2.0开始,CakePHP支持gettext文件格式,该

PHP语言开发中如何检测和处理空值错误?PHP语言开发中如何检测和处理空值错误?Jun 11, 2023 am 10:51 AM

随着现代Web应用不断发展,PHP作为其中最流行的编程语言之一,被广泛地应用于网站开发中。但在开发过程中,经常会遇到空值错误,而这些错误会导致应用程序抛出异常,进而影响用户的使用体验。因此,在PHP开发过程中,如何检测和处理空值错误,是程序员们需要掌握的重要技能。一、什么是空值错误在PHP开发过程中,空值错误通常指的是两种情况:变量未初始化和变

Java错误:JavaFX线程卡顿错误,如何处理和避免Java错误:JavaFX线程卡顿错误,如何处理和避免Jun 24, 2023 pm 05:52 PM

在进行JavaFX应用程序开发的过程中,我们常常会遇到JavaFX线程卡顿错误。这种错误的严重程度不同,可能会对程序的稳定性和性能产生不利的影响。为了保证程序的正常运行,我们需要了解JavaFX线程卡顿错误的原因和解决方法,以及如何预防这种错误的发生。一、JavaFX线程卡顿错误的原因JavaFX是一个多线程的UI应用程序框架,它允许程序在后台线程中执行长时

如何使用PHP进行Excel文件处理?如何使用PHP进行Excel文件处理?May 13, 2023 am 08:00 AM

随着Excel文件在商业领域和日常生活中的不断普及和应用,我们经常需要使用PHP处理Excel文件,例如数据的导入导出,数据的筛选和排序等。因此,本文将介绍如何使用PHP进行Excel文件处理。安装PHPExcel库PHPExcel是一款强大的PHP操作Excel文件的开源库,其支持读取、写入Excel文件,并提供了许多便捷的操作方法。在使用之前需要先安装P

如何构建基于Spring Boot的分布式事务处理如何构建基于Spring Boot的分布式事务处理Jun 23, 2023 am 09:24 AM

在企业级应用程序中,分布式系统已经成为一个常见的架构模型。分布式系统由多个处理单元(节点)组成,这些节点协同工作以完成复杂的任务。在分布式系统中,事务处理是一个必不可少的组件,因为它能够确保所有节点协同工作的结果一致性。本文将介绍如何构建基于SpringBoot的分布式事务处理。一、什么是分布式事务处理?在单节点系统中,事务处理通常是一个简单的过程。当应用

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
2 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
2 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能