搜索
首页数据库mysql教程Accessing a File (Linux Kernel)

Accessing Files Different Ways to Access a File Canonical Mode (O_SYNC and O_DIRECT cleared) Synchronous Mode (O_SYNC flag set) Memory Mapping Mode Direct I/O Mode (O_DIRECT flag set, user space - disk) Asynchronous Mode Reading a file is

Accessing Files

Different Ways to Access a File

ð  Canonical Mode (O_SYNC and O_DIRECT cleared)

ð  Synchronous Mode (O_SYNC flag set)

ð  Memory Mapping Mode

ð  Direct I/O Mode (O_DIRECT flag set, user space disk)

ð  Asynchronous Mode

 

Reading a file is always page-based: the kernel always transfers whole pages of data at once.

Allocate a new page frame -> fill the page with suitable portion of the file -> add the page to the page cache -> copy the requested bytes to the process address space

 

Writing to a file may involve disk space allocation because the file size may increase.

 

Reading from a File

/**

 * do_generic_file_read - generic file read routine

 * @filp:  the file to read

 * @ppos:        current file position

 * @desc:        read_descriptor

 * @actor:       read method

 *

 * This is a generic file read routine, and uses the

 * mapping->a_ops->readpage() function for the actual low-level stuff.

 *

 * This is really ugly. But the goto's actually try to clarify some

 * of the logic when it comes to error handling etc.

 */

static void do_generic_file_read(struct file *filp, loff_t *ppos,

                   read_descriptor_t *desc, read_actor_t actor)

 

 

Read-Ahead of Files

Many disk accesses are sequential, that is, many adjacent sectors on disk are likely to be fetched when handling a series of process’s read requests on the same file.

Read-ahead consists of reading several adjacent pages of data of a regular file or block device file before they are actually requested. In most cases, this greatly improves the system performance, because it lets the disk controller handle fewer commands. In some cases, the kernel reduces or stops read-ahead when some random accesses to a file are performed.

 

Natural language description -> design (data structure + algo) -> code

Description:

ð  Read-ahead may be gradually increased as long as the process keeps accessing the file sequentially.

ð  Read-ahead must be scaled down when or even disabled when the current access is not sequential.

ð  Read-ahead should be stopped when the process keeps accessing the same page over and over again or when almost all the pages of the file are in the cache.

 

 

 

Design:

Current window: a contiguous portion of the file consisting of pages being requested by the process

 

Ahead window: a contiguous portion of the file following the ones in the current window

 

/*

 * Track a single file's readahead state

 */

struct file_ra_state {

       pgoff_t start;                     /* where readahead started */

       unsigned int size;              /* # of readahead pages */

       unsigned int async_size;   /* do asynchronous readahead when

                                      there are only # of pages ahead */

 

       unsigned int ra_pages;            /* Maximum readahead window */

       unsigned int mmap_miss;        /* Cache miss stat for mmap accesses */

       loff_t prev_pos;          /* Cache last read() position */

};

 

 

struct file {

       struct file_ra_state    f_ra;

}

 

When is read-ahead algorithm executed?

1.     Read pages of file data

2.     Allocate a page for a file memory mapping

3.     Readahead(), posix_fadvise(), madvise()

 

Writing to a File

Deferred write

 

Memory Mapping

ð  Shared Memory Mapping

ð  Private Memory Mapping

 

System call: mmap(), munmap(), msync()

mmap, munmap - map or unmap files or devices into memory

msync - synchronize a file with a memory map

 

The kernel offers several hooks to customize the memory mapping mechanism for every different filesystem. The core of memory mapping implementation is delegated to a file object’s method named mmap. For disk-based filesystems and for block devices, this method is implemented by a generic function called generic_file_mmap().

 

 

Memory mapping mechanism depends on the demand paging mechanism.

For reasons of efficiency, page frames are not assigned to a memory mapping right after it has been created, but at the last moment that is, when the process tries to address one of its pages, thus causing a Page Fault exception.

 

Non-Linear Memory Mapping

The  remap_file_pages()  system call is used to create a non-linear mapping, that is, a mapping in which the pages of the file are mapped into a non-sequen

       tial order in memory.  The advantage of using remap_file_pages() over using repeated calls to mmap(2) is that the former approach does not require the  ker

       nel to create additional VMA (Virtual Memory Area) data structures.

 

       To create a non-linear mapping we perform the following steps:

 

       1. Use mmap(2) to create a mapping (which is initially linear).  This mapping must be created with the MAP_SHARED flag.

 

       2. Use  one  or more calls to remap_file_pages() to rearrange the correspondence between the pages of the mapping and the pages of the file.  It is possible

          to map the same page of a file into multiple locations within the mapped region.

 

 

Direct I/O Transfer

There’s no substantial difference between:

1.     Accessing a regular file through filesystem

2.     Accessing it by referencing its blocks on the underlying block device file

3.     Establish a file memory mapping

 

However, some highly-sophisticated programs (self-caching application such as high-performance server) would like to have full control of the I/O data transfer mechanism.

 

Linux offers a simple way to bypass the page cache: direct I/O transfer.

O_DIRECT

 

Generic_file_direct_IO() -> __block_dev_direct_IO(), it does not return until all direct IO data transfers have been completed.

 

 

Asynchronous I/O

“Asynchronous” essentially means that when a User Mode process invokes a library function to read or write a file, the function terminates as soon as the read or write operation has been enqueued, possibly even before the real I/O data transfer takes place. The calling process thus continue its execution while the data is being transferred.

 

aio_read(3), aio_cancel(3), aio_error(3), aio_fsync(3), aio_return(3), aio_suspend(3), aio_write(3)

 

Asynchronous I/O Implementation

ð  User-level Implementation

ð  Kernel-level Implementation

 

User-level Implementation:

Clone the current process -> the child process issues synchronous I/O requests -> aio_xxx terminates in parent process

 

io_setup(2), io_cancel(2), io_destroy(2), io_getevents(2), io_submit(2)

 

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL:初学者的基本技能MySQL:初学者的基本技能Apr 18, 2025 am 12:24 AM

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL:结构化数据和关系数据库MySQL:结构化数据和关系数据库Apr 18, 2025 am 12:22 AM

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL:解释的关键功能和功能MySQL:解释的关键功能和功能Apr 18, 2025 am 12:17 AM

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL的目的:与MySQL数据库进行交互SQL的目的:与MySQL数据库进行交互Apr 18, 2025 am 12:12 AM

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

初学者的MySQL:开始数据库管理初学者的MySQL:开始数据库管理Apr 18, 2025 am 12:10 AM

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA

MySQL的角色:Web应用程序中的数据库MySQL的角色:Web应用程序中的数据库Apr 17, 2025 am 12:23 AM

MySQL在Web应用中的主要作用是存储和管理数据。1.MySQL高效处理用户信息、产品目录和交易记录等数据。2.通过SQL查询,开发者能从数据库提取信息生成动态内容。3.MySQL基于客户端-服务器模型工作,确保查询速度可接受。

mysql:构建您的第一个数据库mysql:构建您的第一个数据库Apr 17, 2025 am 12:22 AM

构建MySQL数据库的步骤包括:1.创建数据库和表,2.插入数据,3.进行查询。首先,使用CREATEDATABASE和CREATETABLE语句创建数据库和表,然后用INSERTINTO语句插入数据,最后用SELECT语句查询数据。

MySQL:一种对数据存储的初学者友好方法MySQL:一种对数据存储的初学者友好方法Apr 17, 2025 am 12:21 AM

MySQL适合初学者,因为它易用且功能强大。1.MySQL是关系型数据库,使用SQL进行CRUD操作。2.安装简单,需配置root用户密码。3.使用INSERT、UPDATE、DELETE、SELECT进行数据操作。4.复杂查询可使用ORDERBY、WHERE和JOIN。5.调试需检查语法,使用EXPLAIN分析查询。6.优化建议包括使用索引、选择合适数据类型和良好编程习惯。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。