##---------mysql学习(四)索引的建立--------### #今天突然开窍了,所以补充点索引方面的知识。 #创建索引,这里仍然以数据较少的mytab表为例: #原数据为: mysql set names gbk; Query OK, 0 rows affected (0.00 sec) mysql select * from mytab; -----
##---------mysql学习(四)索引的建立--------###
#今天突然开窍了,所以补充点索引方面的知识。
#创建索引,这里仍然以数据较少的mytab表为例:
#原数据为:
mysql> set names gbk;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from mytab;
+----+--------+-----+--------+
| id | name | age | salary |
+----+--------+-----+--------+
| 1 | ?阿琼 | 23 | 1000 |
| 2 | 秋水虾 | 24 | 500 |
| 3 | 害人精 | 22 | 100 |
+----+--------+-----+--------+
3 rows in set (0.00 sec)
#alter table table_name add index index_name (column)==
#create index index_name on table_name(column);
#alter创建索引示例
mysql> alter table mytab add index mytab_name (name);
Query OK, 3 rows affected (0.15 sec)
Records: 3 Duplicates: 0 Warnings: 0
#create创建索引示例:
mysql> create index mytab_id on mytab (id);
Query OK, 3 rows affected (0.16 sec)
Records: 3 Duplicates: 0 Warnings: 0
#查看索引
mysql> show index from mytab;
+-------+------------+----------+--------------+-------------+-----------+------
-------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardi
nality | Sub_part | Packed | Null | Index_type | Comment |
+-------+------------+----------+--------------+-------------+-----------+------
-------+----------+--------+------+------------+---------+
| mytab | 0 | PRIMARY | 1 | id | A |
3 | NULL | NULL | | BTREE | |
| mytab | 1 | mytab_id | 1 | id | A |
3 | NULL | NULL | | BTREE | |
+-------+------------+----------+--------------+-------------+-----------+------
-------+----------+--------+------+------------+---------+
2 rows in set (0.00 sec)
#创建unique索引
mysql> alter table mytab add unique (name);
Query OK, 3 rows affected (0.20 sec)
Records: 3 Duplicates: 0 Warnings: 0
#创建联合索引:
mysql> create index mytab_id_name on mytab (id,name);
Query OK, 3 rows affected (0.20 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> show index from mytab;
+-------+------------+---------------+--------------+-------------+-----------+-
------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation |
Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+-------+------------+---------------+--------------+-------------+-----------+-
------------+----------+--------+------+------------+---------+
| mytab | 0 | PRIMARY | 1 | id | A |
3 | NULL | NULL | | BTREE | |
| mytab | 0 | name | 1 | name | A |
3 | NULL | NULL | | BTREE | |
| mytab | 1 | mytab_name | 1 | name | A |
3 | NULL | NULL | | BTREE | |
| mytab | 1 | mytab_id_name | 1 | id | A |
3 | NULL | NULL | | BTREE | |
| mytab | 1 | mytab_id_name | 2 | name | A |
3 | NULL | NULL | | BTREE | |
+-------+------------+---------------+--------------+-------------+-----------+-
------------+----------+--------+------+------------+---------+
5 rows in set (0.00 sec)
#下面我们尝试一下删除索引,删除用drop
#drop index index_name on table_name==
#alter table table_name drop index index_name;
#drop示例:
mysql> drop index mytab_id on mytab;
Query OK, 3 rows affected (0.17 sec)
Records: 3 Duplicates: 0 Warnings: 0
#alter示例:
mysql> alter table mytab drop index mytab_id_name;
Query OK, 3 rows affected (0.17 sec)
Records: 3 Duplicates: 0 Warnings: 0
#现在发现由于数据数量较小,根本无法判断索引存在的价值。
#
#这里我打算向其中添加3000行数据,这里需要用到Java代码:
#
| 3001 | yiha_2997 | 22 | 5997 |
| 3002 | yiha_2998 | 22 | 5998 |
| 3003 | yiha_2999 | 22 | 5999 |
+------+-----------+-----+--------+
3003 rows in set (0.01 sec)
#######################java代码段##############################
public static void main(String[] args) {
Connection conn=DBConnection.getConnection();
try {
conn.setAutoCommit(false);
PreparedStatement state=conn.prepareStatement
("insert into mytab(name,age,salary) values (?,?,?)");
for(int i=0;i
state.setString(1,"yiha_"+i );
state.setInt(2, 22);
state.setInt(3, 3000+i);
state.addBatch();
}
state.executeBatch();
conn.commit();
state.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
######################数据库连接connection######################
private static String url="jdbc:mysql://" +
"localhost:3306/mydb?useUnicode=true&characterEncoding=UTF-8";
private static String driver="com.mysql.jdbc.Driver";
private static String name="root";
private static String pwd="root";
public static Connection getConnection(){
Connection conn;
try {
Class.forName(driver).newInstance();
conn = DriverManager.getConnection(url, name, pwd);
return conn;
###################################################################
##现在数据库中有3003条数据,我们看一下检索数据时间。
#如检索:
id NAME age salary
| 2894 | yiha_2890 | 22 | 5890 |
#id以及name为索引,但是age和salary为非索引
mysql> select * from mytab where id=2894;
+------+-----------+-----+--------+
| id | name | age | salary |
+------+-----------+-----+--------+
| 2894 | yiha_2890 | 22 | 5890 |
+------+-----------+-----+--------+
1 row in set (0.00 sec)
mysql> select * from mytab where salary=5890;
+------+-----------+-----+--------+
| id | name | age | salary |
+------+-----------+-----+--------+
| 2894 | yiha_2890 | 22 | 5890 |
+------+-----------+-----+--------+
1 row in set (0.00 sec)
#可以看出无差别,也许数据仍旧太少,现在将数据提升到30000;
mysql> select * from mytab where id=30000; #id为索引
+-------+------------+-----+--------+
| id | name | age | salary |
+-------+------------+-----+--------+
| 30000 | yiha_29996 | 23 | 32996 |
+-------+------------+-----+--------+
1 row in set (0.00 sec)
mysql> select * from mytab where salary=32996;#salary为非索引
+-------+------------+-----+--------+
| id | name | age | salary |
+-------+------------+-----+--------+
| 30000 | yiha_29996 | 23 | 32996 |
+-------+------------+-----+--------+
1 row in set (0.02 sec)
#由于name也是索引,所以这里试一下用name查找数据:
mysql> select * from mytab where name='yiha_29996';#name为索引
+-------+------------+-----+--------+
| id | name | age | salary |
+-------+------------+-----+--------+
| 30000 | yiha_29996 | 23 | 32996 |
+-------+------------+-----+--------+
1 row in set (0.00 sec)
##虽然在数据多次实验中能够看出索引的作用,但是并不是很明显。以上每一组所耗费时间都是
#个人寻找的出现次数最多的时间。
##个人感觉测试索引效果挺无聊的,索引的作用很多文章都只写了可以精确查找,至于索引如何
#运用貌似很少有相关的东西。数据库中的数据还可以随意扩大,个人感觉先这样吧。

在数据库优化中,应根据查询需求选择索引策略:1.当查询涉及多个列且条件顺序固定时,使用复合索引;2.当查询涉及多个列但条件顺序不固定时,使用多个单列索引。复合索引适用于优化多列查询,单列索引则适合单列查询。

要优化MySQL慢查询,需使用slowquerylog和performance_schema:1.启用slowquerylog并设置阈值,记录慢查询;2.利用performance_schema分析查询执行细节,找出性能瓶颈并优化。

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。

MySQL异步主从复制通过binlog实现数据同步,提升读性能和高可用性。1)主服务器记录变更到binlog;2)从服务器通过I/O线程读取binlog;3)从服务器的SQL线程应用binlog同步数据。

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL的安装和基本操作包括:1.下载并安装MySQL,设置根用户密码;2.使用SQL命令创建数据库和表,如CREATEDATABASE和CREATETABLE;3.执行CRUD操作,使用INSERT,SELECT,UPDATE,DELETE命令;4.创建索引和存储过程以优化性能和实现复杂逻辑。通过这些步骤,你可以从零开始构建和管理MySQL数据库。

InnoDBBufferPool通过将数据和索引页加载到内存中来提升MySQL数据库的性能。1)数据页加载到BufferPool中,减少磁盘I/O。2)脏页被标记并定期刷新到磁盘。3)LRU算法管理数据页淘汰。4)预读机制提前加载可能需要的数据页。

MySQL适合初学者使用,因为它安装简单、功能强大且易于管理数据。1.安装和配置简单,适用于多种操作系统。2.支持基本操作如创建数据库和表、插入、查询、更新和删除数据。3.提供高级功能如JOIN操作和子查询。4.可以通过索引、查询优化和分表分区来提升性能。5.支持备份、恢复和安全措施,确保数据的安全和一致性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

禅工作室 13.0.1
功能强大的PHP集成开发环境

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境