搜索
首页数据库mysql教程SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPING函数 先来创建一个测试表 1 USE [ tempdb ] 2 GO 3 4 CREATE TABLE #temptb(id INT ,NAME VARCHAR ( 200 )) 5 GO 6 7 INSERT INTO [ #temptb ] ( [ id ] , [ NAME ] ) 8 SELECT 1 , ' 中国 '

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPING函数

 先来创建一个测试表

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> 
<span> 4</span> <span>CREATE</span> <span>TABLE</span> #temptb(id <span>INT</span> ,NAME <span>VARCHAR</span>(<span>200</span><span>))
</span><span> 5</span> <span>GO</span>
<span> 6</span> 
<span> 7</span> <span>INSERT</span> <span>INTO</span> <span>[</span><span>#temptb</span><span>]</span> ( <span>[</span><span>id</span><span>]</span>, <span>[</span><span>NAME</span><span>]</span><span> )
</span><span> 8</span> <span>SELECT</span> <span>1</span>,<span>'</span><span>中国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span> 9</span> <span>SELECT</span> <span>2</span>,<span>'</span><span>中国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>10</span> <span>SELECT</span> <span>3</span>,<span>'</span><span>英国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>11</span> <span>SELECT</span> <span>4</span>,<span>'</span><span>英国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>12</span> <span>SELECT</span> <span>5</span>,<span>'</span><span>美国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>13</span> <span>SELECT</span> <span>6</span>,<span>'</span><span>美国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>14</span> <span>SELECT</span> <span>null</span>, <span>'</span><span>法国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>15</span> <span>SELECT</span> <span>8</span>,<span>'</span><span>法国</span><span>'</span> 
<span>16</span> <span>GO</span>
<span>17</span> 
<span>18</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>
<span>19</span> <span>GO</span>

 

先来看一下SELECT语句的语法:

<span>1</span> <span>SELECT</span> <span>[</span><span> ALL | DISTINCT </span><span>]</span> <span>[</span><span> topSubclause </span><span>]</span><span> aliasedExpr 
</span><span>2</span>       <span>[</span><span>{ , aliasedExpr }</span><span>]</span> <span>FROM</span> fromClause <span>[</span><span> WHERE whereClause </span><span>]</span> <span>[</span><span> GROUP BY groupByClause [ HAVING havingClause </span><span>]</span> ] <span>[</span><span> ORDER BY orderByClause </span><span>]</span>
<span>3</span> <span>or</span>
<span>4</span> <span>SELECT</span> VALUE <span>[</span><span> ALL | DISTINCT </span><span>]</span> <span>[</span><span> topSubclause </span><span>]</span> expr <span>FROM</span> fromClause <span>[</span><span> WHERE whereClause </span><span>]</span> <span>[</span><span> GROUP BY groupByClause [ HAVING havingClause </span><span>]</span> ] <span>[</span><span> ORDER BY orderByClause</span>

 

ALL关键字:指定在结果集中可以显示重复的行,这是默认的关键字,也就是说,当您在查询中不使用ALL关键字,默认都已经附加上了ALL这个关键字

例如下面两个SQL语句,实际上是等价的,都会把重复的记录select出来

<span>1</span> <span>--</span><span>这两个语句是等价的</span>
<span>2</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>--</span><span>-----------------------------------------</span>
<span>5</span> <span>SELECT</span> <span>ALL</span> <span>*</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>
<span>6</span> <span>GO</span>

如果您需要把唯一值select出来,过滤掉那些重复值需要使用DISTINCT关键字

<span>1</span> <span>SELECT</span> <span>DISTINCT</span>(<span>[</span><span>NAME</span><span>]</span>) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>

而当您把SQL语句,字段放在ALL括号中,这时候就会变成一个表达式,例如下面SQL语句

<span>1</span> <span>SELECT</span> <span>ALL</span>(<span>[</span><span>NAME</span><span>]</span><span>+</span><span>'</span><span>您好</span><span>'</span>) <span>AS</span> <span>'</span><span>国别</span><span>'</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

处理表重复记录(查询和删除)

在Name相同ID最大的记录,其中有一个SQL语句

<span>1</span> <span>SELECT</span>  <span>*</span>
<span>2</span> <span>FROM</span>    <span>[</span><span>#temptb</span><span>]</span><span> a
</span><span>3</span> <span>WHERE</span>   ID<span>!<all> ( <span>SELECT</span><span>    ID
</span><span>4</span>                   <span>FROM</span>      <span>[</span><span>#temptb</span><span>]</span>
<span>5</span>                   <span>WHERE</span>     Name <span>=</span> a.Name )</all></span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

如果去掉ALL关键字会怎样呢?

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

因为子查询需要的是一个表达式,所以需要使用ALL关键字把他变为一个表达式,所以要用ALL

 

ALL关键字还可以放在GROUP BY 之后

这里要分两种情况,一种是SQL语句中有where子句的的,另一种是SQL语句中没有where子句的

情况一:

<span>1</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span> <span>WHERE</span> NAME<span>=</span><span>'</span><span>法国</span><span>'</span> <span>GROUP</span> <span>BY</span> <span>ALL</span><span> NAME
</span><span>2</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span> <span>WHERE</span> NAME<span>=</span><span>'</span><span>法国</span><span>'</span>  <span>GROUP</span> <span>BY</span> NAME

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

对于没有符合条件的行的组,这里是没有符合name='法国',作为聚合值的列值为NULL

如果没有ALL关键字,GROUP BY子句将不显示没有符合条件的行的组

情况二:

<span>1</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>  <span>GROUP</span> <span>BY</span> <span>ALL</span><span> NAME
</span><span>2</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>  <span>GROUP</span> <span>BY</span>  NAME

当SQL语句中没有where子句的时候,查询出来的结果都是一样的

 

ALL关键字还可以放在UNION之后

<span>1</span> <span>USE</span> <span>[</span><span>GPOSDB</span><span>]</span>
<span>2</span> <span>GO</span>
<span>3</span> <span>INSERT</span> <span>INTO</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>SystemPara</span><span>]</span> ( <span>[</span><span>ParaValue</span><span>]</span>, <span>[</span><span>Name</span><span>]</span>, <span>[</span><span>Description</span><span>]</span><span> )
</span><span>4</span> <span>SELECT</span> <span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>5</span> <span>SELECT</span> <span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span> 

 


PERCENT关键字

PERCENT关键字需要跟TOP 关键字一起使用

从结果集中输出百分之N行,n必须是介于0~100之间的整数

<span>1</span> <span>SELECT</span> <span>TOP</span> <span>10</span> <span>PERCENT</span> <span>*</span> <span>from</span> <span>[</span><span>#temptb</span><span>]</span>
<span>2</span> <span>GO</span>


上面的SQL语句意思是:从[#temptb]表中输出10%的记录数,因为没有使用order by子句,所以这条记录是随机的

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

因为[#temptb]表有8条记录,8*10%=0.8 四舍五入之后相当于一条记录

<span>1</span> <span>SELECT</span> <span>TOP</span> <span>30</span> <span>PERCENT</span> <span>*</span> <span>from</span> <span>[</span><span>#temptb</span><span>]</span>
<span>2</span> <span>GO</span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

8*30%=2.4 四舍五入之后相当于三条记录,SQLSERVER在这里就算四舍五入不足三条记录,他也会输出偏大的数,也就是三条记录

 


CUBE关键字

CUBE关键字:如果需要在结果集内不仅包含由GROUP BY提供的正常行,还包含汇总行,可以用CUBE关键字。CUBE关键字与GROUP BY一起使用

当使用CUBE关键字的时候,可以使用GROUPING函数来输出一个额外的列,当结果行是正常的行时,返回0;当结果行是汇总行时,返回1。

<span>1</span> <span>SELECT</span>  <span>AVG</span>(id) <span>AS</span> <span>'</span><span>平均值</span><span>'</span>, <span>GROUPING</span>(NAME) <span>AS</span> <span>'</span><span>是否已汇总</span><span>'</span>
<span>2</span> <span>FROM</span>    <span>[</span><span>#temptb</span><span>]</span>
<span>3</span> <span>GROUP</span> <span>BY</span><span> NAME
</span><span>4</span>         <span>WITH</span> CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

最后一行显示了GROUP BY的记录有多少行,一共有4行记录,而在汇总行(即最后一行)是否已汇总那列显示1,表示是汇总行


Grouping关键字

指示是否聚合 GROUP BY 列表中的指定列表达式。

在结果集中,如果 GROUPING 返回 1 则指示聚合;返回 0 则指示不聚合。

如果指定了 GROUP BY,则 GROUPING 只能用在 SELECT

http://msdn.microsoft.com/zh-cn/library/ms178544(v=sql.105).aspx

GROUPING 用于区分标准空值和由 ROLLUP、CUBE 或 GROUPING SETS 返回的空值。

作为 ROLLUP、CUBE 或 GROUPING SETS 操作结果返回的 NULL 是 NULL 的特殊应用。

它在结果集内作为列的占位符,表示全体。

 

以下示例将分组 SalesQuota 并聚合 SaleYTD 数量。GROUPING 函数应用于 SalesQuota 列。

<span>1</span> <span>USE</span> <span>[</span><span>AdventureWorks</span><span>]</span><span>;
</span><span>2</span> <span>GO</span>
<span>3</span> <span>SELECT</span>  SalesQuota, <span>SUM</span>(SalesYTD) <span>'</span><span>TotalSalesYTD</span><span>'</span><span>,
</span><span>4</span>         <span>GROUPING</span>(SalesQuota) <span>AS</span> <span>'</span><span>Grouping</span><span>'</span>
<span>5</span> <span>FROM</span><span>    Sales.SalesPerson
</span><span>6</span> <span>GROUP</span> <span>BY</span><span> SalesQuota
</span><span>7</span>         <span>WITH</span><span> ROLLUP;
</span><span>8</span> <span>GO</span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

结果集在 SalesQuota 下面显示两个空值。

第一个 NULL 代表从表中的这一列得到的空值组。

第二个 NULL 位于 ROLLUP 操作所添加的汇总行之中。

汇总行显示所有 SalesQuota 组的 TotalSalesYTD 数量,并以 Grouping 列中的 1 进行指示。

 


 

http://msdn.microsoft.com/zh-cn/library/ms191500(v=sql.100).aspx
对简单汇总报表使用 Transact-SQL

生成简单汇总报表的应用程序可使用下列 Transact-SQL 元素:

ROLLUP、CUBE 或 GROUPING SETS 运算符。这些是 SELECT 语句的 GROUP BY 子句的扩展。

COMPUTE 或 COMPUTE BY 运算符。这两种运算符也与 GROUP BY 相关联。

这些运算符生成的结果集中,既包含每个项目的明细行,也包含每个组的汇总行,汇总行显示了该组的聚合合计。

GROUP BY 子句可用于生成只包含各组的聚合而不包含其明细行的结果。

应用程序应使用 Analysis Services,而不是 CUBE、ROLLUP、COMPUTE 或 COMPUTE BY。

特别要注意的是,CUBE 和 ROLLUP 应当只用在无法访问 OLE DB 或 ADO 的环境中,例如脚本或存储过程中。

支持 COMPUTE 和 COMPUTE BY 是为了向后兼容。

应当优先选用 ROLLUP 运算符而非 COMPUTE 或 COMPUTE BY。由 COMPUTE 或 COMPUTE BY 生成的汇总值将作为多个单独的结果集返回,

这些结果集之间还插入了包含各组明细行的结果集;或者作为包含合计的结果集返回,附加在主结果集之后。

处理这些多个结果集将增加应用程序代码的复杂性。服务器游标既不支持 COMPUTE,也不支持 COMPUTE BY。

但 ROLLUP 支持服务器游标。CUBE 和 ROLLUP 将生成单个结果集,其中包含嵌入的小计合计行。

此外,查询优化器有时还可以为 ROLLUP 生成比为 COMPUTE 和 COMPUTE BY 生成的执行计划更高效的执行计划。

如果使用不带这些运算符的 GROUP BY,将返回单个结果集,其中每组对应一行,行中包含该组的聚合小计。结果集中没有明细行。

 


SQLSERVER中CubeRollUp的用法

CubeRollUp可以对查询的数据进行汇总,在数据统计中经常用到,尤其是做报表时,用在Select语句中

下面就对两种统计方式进行对比

SQL脚本如下:

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> <span>CREATE</span> <span>TABLE</span><span> t_test
</span><span> 4</span> <span>(
</span><span> 5</span>   id <span>INT</span><span> ,
</span><span> 6</span>   productName <span>VARCHAR</span>(<span>200</span><span>) ,
</span><span> 7</span>   price <span>MONEY</span><span> ,
</span><span> 8</span>   num <span>INT</span><span> ,
</span><span> 9</span>   amount <span>INT</span><span> ,
</span><span>10</span>   operatedate <span>DATETIME</span>
<span>11</span> <span>)
</span><span>12</span> <span>GO</span>
<span>13</span> 
<span>14</span> <span>--</span><span>插入随机数据</span>
<span>15</span> <span>DECLARE</span> <span>@i</span> <span>INT</span> 
<span>16</span> <span>DECLARE</span> <span>@rand</span> <span>MONEY</span>
<span>17</span> <span>DECLARE</span> <span>@date</span> <span>DATETIME</span>
<span>18</span> <span>DECLARE</span> <span>@index</span> <span>INT</span> 
<span>19</span> <span>DECLARE</span> <span>@DateBase</span> <span>INT</span> 
<span>20</span> <span>SET</span> <span>@date</span> <span>=</span> <span>'</span><span>2012-10-23</span><span>'</span>
<span>21</span> <span>SET</span> <span>@i</span> <span>=</span> <span>1</span>
<span>22</span> <span>WHILE</span> ( <span>@i</span> <span> <span>18</span><span> ) 
</span><span>23</span>     <span>BEGIN</span>
<span>24</span>         <span>SET</span> <span>@rand</span> <span>=</span> <span>RAND</span>() <span>*</span> <span>20</span>
<span>25</span>         <span>SET</span> <span>@index</span> <span>=</span> <span>CAST</span>(<span>RAND</span>() <span>*</span> <span>3</span> <span>AS</span> <span>INT</span><span>)
</span><span>26</span>         <span>SET</span> <span>@DateBase</span> <span>=</span> <span>CAST</span>(<span>RAND</span>() <span>*</span> <span>10</span> <span>AS</span> <span>INT</span><span>)
</span><span>27</span>  
<span>28</span>         <span>INSERT</span>  <span>INTO</span><span> t_test ( id, productName, price, num, amount, operatedate )
</span><span>29</span>         <span>VALUES</span>  ( <span>@i</span>, <span>'</span><span>product</span><span>'</span> <span>+</span> <span>CAST</span> (<span>@index</span> <span>AS</span> <span>VARCHAR</span>(<span>10</span>)), <span>@rand</span>, <span>100</span><span>,
</span><span>30</span>                   <span>@rand</span> <span>*</span> <span>100</span>, <span>@date</span> <span>+</span> <span>@DateBase</span><span> )
</span><span>31</span>         <span>SET</span> <span>@i</span> <span>=</span> <span>@i</span> <span>+</span> <span>1</span>
<span>32</span>     <span>END</span>
<span>33</span>  
<span>34</span>  
<span>35</span> <span>SELECT</span>  <span>*</span>  <span>FROM</span>    t_test</span>

 SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

 分别用两种方式统计:

<span> 1</span> <span>--</span><span>分别用两种方式统计:</span>
<span> 2</span>  
<span> 3</span> <span>SELECT</span>  <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(operatedate) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span> 4</span>              <span>ELSE</span> <span>CONVERT</span>(<span>VARCHAR</span>(<span>10</span>), operatedate, <span>120</span><span>)
</span><span> 5</span>         <span>END</span> <span>AS</span> 日期, <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(productName) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span> 6</span>                         <span>ELSE</span><span> productName
</span><span> 7</span>                    <span>END</span> <span>AS</span> 产品名称, <span>SUM</span>(amount) <span>/</span> <span>SUM</span>(num) <span>AS</span> 平均价格, <span>SUM</span>(num) <span>AS</span><span> 数量,
</span><span> 8</span>         <span>SUM</span>(amount) <span>AS</span><span> 金额
</span><span> 9</span> <span>FROM</span><span>    t_test
</span><span>10</span> <span>GROUP</span> <span>BY</span> operatedate, productName  <span>WITH</span><span> ROLLUP;   
</span><span>11</span> <span>--</span><span>-----------------------------------------------------------------</span>
<span>12</span> <span>SELECT</span>  <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(operatedate) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span>13</span>              <span>ELSE</span> <span>CONVERT</span>(<span>VARCHAR</span>(<span>10</span>), operatedate, <span>120</span><span>)
</span><span>14</span>         <span>END</span> <span>AS</span> 日期, <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(productName) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span>15</span>                         <span>ELSE</span><span> productName
</span><span>16</span>                    <span>END</span> <span>AS</span> 产品名称, <span>SUM</span>(amount) <span>/</span> <span>SUM</span>(num) <span>AS</span> 平均价格, <span>SUM</span>(num) <span>AS</span><span> 数量,
</span><span>17</span>         <span>SUM</span>(amount) <span>AS</span><span> 金额
</span><span>18</span> <span>FROM</span><span>    t_test
</span><span>19</span> <span>GROUP</span> <span>BY</span> operatedate, productName <span>WITH</span> CUBE; 

ROLLUP 按照分组顺序,先对第一个字段operatedate分组,在组内进行统计,最后给出合计

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

<span>1</span> <span>SELECT</span>  <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(operatedate) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>  <span>--</span><span>用GROUPING得出是否是汇总行,这个例子里最后一行是汇总行</span>
<span>2</span>              <span>ELSE</span> <span>CONVERT</span>(<span>VARCHAR</span>(<span>10</span>), operatedate, <span>120</span><span>)
</span><span>3</span>         <span>END</span> <span>AS</span> 日期, <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(productName) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span>4</span>                         <span>ELSE</span><span> productName
</span><span>5</span>                    <span>END</span> <span>AS</span> 产品名称, <span>SUM</span>(amount) <span>/</span> <span>SUM</span>(num) <span>AS</span> 平均价格, <span>SUM</span>(num) <span>AS</span><span> 数量,
</span><span>6</span>         <span>SUM</span>(amount) <span>AS</span><span> 金额
</span><span>7</span> <span>FROM</span><span>    t_test
</span><span>8</span> <span>GROUP</span> <span>BY</span> operatedate, productName  <span>WITH</span> ROLLUP;   <span>--</span><span>因为operatedate和productName字段都在GROUPING函数里统计是否汇总,所以GROUP BY后面就需要加operatedate和productName这两个字段</span>

 

CUBE 会对所有的分组字段进行统计,如上例,先对日期求小计,也就是统计每天的产品总金额,然后统计每个产品的总金额,最后给出总的合计。

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

ROLLUPCUBE的区别就是: ROLLUP 只会去统计group by 后面的第一个字段每个分组的小计和第一个字段的总计
 
Grouping(字段名) 用来区分当前行是不是小计产生的行,  Grouping(字段名)=1 说明是统计行,Grouping(字段名)=0 说明是表中行

可以用在case,where 后面

http://www.2cto.com/database/201210/163455.html


另外一个例子

SQL脚本如下:

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPINSQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> <span>CREATE</span> <span>TABLE</span> Sales (EmpId <span>INT</span>, Yr <span>INT</span>, Sales <span>MONEY</span><span>)
</span><span> 4</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>, <span>2005</span>, <span>12000</span><span>)
</span><span> 5</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>, <span>2006</span>, <span>18000</span><span>)
</span><span> 6</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>, <span>2007</span>, <span>25000</span><span>)
</span><span> 7</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>, <span>2005</span>, <span>15000</span><span>)
</span><span> 8</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>, <span>2006</span>, <span>6000</span><span>)
</span><span> 9</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>, <span>2006</span>, <span>20000</span><span>)
</span><span>10</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>, <span>2007</span>, <span>24000</span><span>)
</span><span>11</span> 
<span>12</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Sales</span><span>]</span>
View Code

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

ROLLUP

<span>1</span> <span>SELECT</span> EmpId, Yr, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr <span>WITH</span> ROLLUP

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE

<span>1</span> <span>SELECT</span> EmpId, Yr, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr <span>WITH</span> CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE比ROLLUP多了年份的统计,统计了2005、2006、2007年的销售额

可以用下图来表示

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

ROLLUP

 SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

 http://blogs.msdn.com/b/craigfr/archive/2007/10/11/grouping-sets-in-sql-server-2008.aspx

 


验证CUBE和ROLLUP 的区别

ROLLUPCUBE的区别就是: ROLLUP 只会去统计group by 后面的第一个字段每个分组的小计和第一个字段的总计

我们修改一下上面那个实验

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPINSQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> <span>CREATE</span> <span>TABLE</span> Sales (EmpId <span>INT</span>,productName <span>VARCHAR</span>(<span>200</span>), Yr <span>INT</span>, Sales <span>MONEY</span><span>)
</span><span> 4</span> <span>GO</span>
<span> 5</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product2</span><span>'</span>, <span>2005</span>, <span>12000</span><span>)
</span><span> 6</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product1</span><span>'</span>, <span>2005</span>, <span>18000</span><span>)
</span><span> 7</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product0</span><span>'</span>, <span>2006</span>, <span>25000</span><span>)
</span><span> 8</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product2</span><span>'</span>, <span>2007</span>, <span>15000</span><span>)
</span><span> 9</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>,<span>'</span><span>product1</span><span>'</span>, <span>2005</span>, <span>60000</span><span>)
</span><span>10</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>,<span>'</span><span>product1</span><span>'</span>, <span>2006</span>, <span>22000</span><span>)
</span><span>11</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>,<span>'</span><span>product0</span><span>'</span>, <span>2007</span>, <span>24000</span><span>)
</span><span>12</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>,<span>'</span><span>product0</span><span>'</span>, <span>2005</span>, <span>32000</span><span>)
</span><span>13</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>,<span>'</span><span>product2</span><span>'</span>, <span>2006</span>, <span>42000</span><span>)
</span><span>14</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>,<span>'</span><span>product0</span><span>'</span>, <span>2007</span>, <span>24000</span><span>)
</span><span>15</span> <span>GO</span>
<span>16</span> 
<span>17</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Sales</span><span>]</span>
View Code

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

 ROLLUP

<span>1</span> <span>SELECT</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span>, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span> <span>WITH</span> ROLLUP

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE

<span>1</span> <span>SELECT</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span>, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span> <span>WITH</span> CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

可以看到CUBE除了统计EmpId字段之外,还统计了GROUP BY后面的Yr和productName这两个字段

而ROLLUP只统计了EmpId这个字段


 

总结

这些关键字和函数对平时用于统计的应用程序都非常有用,如果大家对这些函数功能都很熟悉的话,在开发当中一定能够得心应手

另外,个人觉得PERCENT关键字可以应用在分页上

 

如有不对的地方,欢迎大家拍砖哦o(∩_∩)o

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL:世界上最受欢迎的数据库的简介MySQL:世界上最受欢迎的数据库的简介Apr 12, 2025 am 12:18 AM

MySQL是一种开源的关系型数据库管理系统,主要用于快速、可靠地存储和检索数据。其工作原理包括客户端请求、查询解析、执行查询和返回结果。使用示例包括创建表、插入和查询数据,以及高级功能如JOIN操作。常见错误涉及SQL语法、数据类型和权限问题,优化建议包括使用索引、优化查询和分表分区。

MySQL的重要性:数据存储和管理MySQL的重要性:数据存储和管理Apr 12, 2025 am 12:18 AM

MySQL是一个开源的关系型数据库管理系统,适用于数据存储、管理、查询和安全。1.它支持多种操作系统,广泛应用于Web应用等领域。2.通过客户端-服务器架构和不同存储引擎,MySQL高效处理数据。3.基本用法包括创建数据库和表,插入、查询和更新数据。4.高级用法涉及复杂查询和存储过程。5.常见错误可通过EXPLAIN语句调试。6.性能优化包括合理使用索引和优化查询语句。

为什么要使用mysql?利益和优势为什么要使用mysql?利益和优势Apr 12, 2025 am 12:17 AM

选择MySQL的原因是其性能、可靠性、易用性和社区支持。1.MySQL提供高效的数据存储和检索功能,支持多种数据类型和高级查询操作。2.采用客户端-服务器架构和多种存储引擎,支持事务和查询优化。3.易于使用,支持多种操作系统和编程语言。4.拥有强大的社区支持,提供丰富的资源和解决方案。

描述InnoDB锁定机制(共享锁,独家锁,意向锁,记录锁,间隙锁,下一键锁)。描述InnoDB锁定机制(共享锁,独家锁,意向锁,记录锁,间隙锁,下一键锁)。Apr 12, 2025 am 12:16 AM

InnoDB的锁机制包括共享锁、排他锁、意向锁、记录锁、间隙锁和下一个键锁。1.共享锁允许事务读取数据而不阻止其他事务读取。2.排他锁阻止其他事务读取和修改数据。3.意向锁优化锁效率。4.记录锁锁定索引记录。5.间隙锁锁定索引记录间隙。6.下一个键锁是记录锁和间隙锁的组合,确保数据一致性。

MySQL查询性能差的常见原因是什么?MySQL查询性能差的常见原因是什么?Apr 12, 2025 am 12:11 AM

MySQL查询性能不佳的原因主要包括没有使用索引、查询优化器选择错误的执行计划、表设计不合理、数据量过大和锁竞争。 1.没有索引导致查询缓慢,添加索引后可显着提升性能。 2.使用EXPLAIN命令可以分析查询计划,找出优化器错误。 3.重构表结构和优化JOIN条件可改善表设计问题。 4.数据量大时,采用分区和分表策略。 5.高并发环境下,优化事务和锁策略可减少锁竞争。

您什么时候应该使用复合索引与多个单列索引?您什么时候应该使用复合索引与多个单列索引?Apr 11, 2025 am 12:06 AM

在数据库优化中,应根据查询需求选择索引策略:1.当查询涉及多个列且条件顺序固定时,使用复合索引;2.当查询涉及多个列但条件顺序不固定时,使用多个单列索引。复合索引适用于优化多列查询,单列索引则适合单列查询。

如何识别和优化MySQL中的慢速查询? (慢查询日志,performance_schema)如何识别和优化MySQL中的慢速查询? (慢查询日志,performance_schema)Apr 10, 2025 am 09:36 AM

要优化MySQL慢查询,需使用slowquerylog和performance_schema:1.启用slowquerylog并设置阈值,记录慢查询;2.利用performance_schema分析查询执行细节,找出性能瓶颈并优化。

MySQL和SQL:开发人员的基本技能MySQL和SQL:开发人员的基本技能Apr 10, 2025 am 09:30 AM

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器