最近处理一个问题的时候,先是收到DB time升高的报警,然后查看DB time的情况发现,已经有近1000%的负载了。
最近处理一个问题的时候,先是收到DB time升高的报警,然后查看DB time的情况发现,已经有近1000%的负载了。
带着好奇心想看看到底是什么样的一个语句导致如此的情况。
先抓取了一个awr报告,因为问题发生的时间段比较集中而且时间持续有几个小时,所以抓取了一个小时的快照。
得到的awr部分内容如下:
Cache Sizes
BeginEnd
Buffer Cache: 39,472M 39,472M Std Block Size: 8K
Shared Pool Size: 1,440M 1,440M Log Buffer: 14,256K
从下面的部分可以看出数据库其实内部的活动并不多,redo生成量不高,tps也不高。
Load Profile
Per SecondPer Transaction
Redo size: 154,276.41 24,024.13
Logical reads: 4,864.90 757.57
Block changes: 779.75 121.42
Physical reads: 509.53 79.35
Physical writes: 359.90 56.04
User calls: 2,658.46 413.98
Parses: 837.89 130.48
Hard parses: 0.09 0.01
Sorts: 171.22 26.66
Logons: 0.47 0.07
Executes: 949.10 147.80
Transactions: 6.42
而查看等待时间,发现第一个等待事件是db file sequential read,平均等待时间有近17ms,
延迟一般需要在10ms以下,或者至少100 reads/sec,在基于SAN存储缓存数据的情况下,sequential read的指标有时候会保持在2ms左右,这个只能说明SAN已经把数据转化为缓存了,倒不能说明硬盘驱动确实很快。这个地方已经超过了10ms说明IO上还是存在较大的影响。我们先放过这个问题,继续往下看。
EventWaitsTime(s)Avg Wait(ms)% Total Call TimeWait Class
db file sequential read 917,810 15,310 17 96.1 User I/O
CPU time 596 3.7
log file sync 16,085 186 12 1.2 Commit
log file parallel write 15,466 140 9 .9 System I/O
ARCH wait on SENDREQ 374 10 27 .1 Network
而根据时间模型来看,绝大部分的DB time都在sql语句方面,所以关注sql语句就是一个很重要的部分。
Statistic NameTime (s)% of DB Time
sql execute elapsed time 15,533.43 97.47
DB CPU 596.11 3.74
connection management call elapsed time 82.89 0.52
parse time elapsed 20.22 0.13
而对于top1的sql语句让自己和吃惊,竟然是一个很简单的update.
Elapsed Time (s)CPU Time (s)ExecutionsElap per Exec (s)% Total DB TimeSQL IdSQL ModuleSQL Text
8,659 69 622 13.92 54.34 update user_test t set t.login_status='' where t.CN_TEST=:1
第一感觉就是这个语句走了全表扫描,因为一个简单的Update竟然需要花费近13秒的时间,,已经算很长的了。
当然猜测也需要验证,我们来看看awrsqrpt的结果。
发现这个报告还是蛮有意思。至于执行计划是走了唯一性索引扫描,所以执行计划的情况来看还是没有问题的。
IdOperationNameRowsBytesCost (%CPU)Time
0 UPDATE STATEMENT 1 (100)
1 UPDATE USER_BILLING
2 INDEX UNIQUE SCAN IDX_USER_TEST_CNMASTER 1 30 1 (0) 00:00:01
但是查看sql语句的执行统计信息,就有些奇怪了。
Stat NameStatement TotalPer Execution% Snap Total
Elapsed Time (ms) 8,659,180 13,921.51 54.34
CPU Time (ms) 69,346 111.49 11.63
Executions 622
Buffer Gets 3,146,068 5,057.99 35.91
Disk Reads 645,229 1,037.35 70.31
Parse Calls 622 1.00 0.04
Rows 621,827 999.72
User I/O Wait Time (ms) 8,608,075
sql语句的执行总共持续8659s左右,然后8608s的时间在user I/O的等待上,这样下来,622次的执行其实花费的时间并不多。
对于这个问题,自己也比较疑惑,开始怀疑是否是磁盘的IO上出现了问题。
但是使用MegaCli查看的时候,发现不存在任何的坏块。
# MegaCli -CfgDsply -a0|grep Error
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
这个时候的一个猜测就是可能由绑定变量的数据类型不同导致的sql性能问题。但是排查一番,发现还是没有得到自己期望的结果。
查看输入的参数类型,都是期望中的varchar2,所以sql语句的过程中还是不会出现自己猜想的全表扫描的可能性。
select name,datatype_string,value_string,datatype from DBA_HIST_SQLBIND where sql_id='94p345yuqh3zd' and snap_id between 58711 and 58712
NAME DATATYPE_STRING VALUE_STRING DATATYPE
------------------------------ --------------- ------------------------------ ----------
:1 VARCHAR2(128) xxxxxx9@test.com 1
:1 VARCHAR2(128) 23234324324234 1
对于IO的瓶颈问题,自己还是从addm中得到了自己需要的东西。
对于磁盘吞吐量的说法,addm的报告中是这么描述的。
FINDING 6: 39% impact (6136 seconds)
------------------------------------
The throughput of the I/O subsystem was significantly lower than expected.

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。

选择PostgreSQL而非MySQL的场景包括:1)需要复杂查询和高级SQL功能,2)要求严格的数据完整性和ACID遵从性,3)需要高级空间功能,4)处理大数据集时需要高性能。PostgreSQL在这些方面表现出色,适合需要复杂数据处理和高数据完整性的项目。

MySQL数据库的安全可以通过以下措施实现:1.用户权限管理:通过CREATEUSER和GRANT命令严格控制访问权限。2.加密传输:配置SSL/TLS确保数据传输安全。3.数据库备份和恢复:使用mysqldump或mysqlpump定期备份数据。4.高级安全策略:使用防火墙限制访问,并启用审计日志记录操作。5.性能优化与最佳实践:通过索引和查询优化以及定期维护兼顾安全和性能。

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

记事本++7.3.1
好用且免费的代码编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),