社交网络中基于张量分解的好友推荐 摘要 引言 相关研究 问题描述 所提好友推荐方法 实验验证 结论 摘要 社交网络中快速增长的用户对现有好友推荐系统提出了挑战。本文我们用张量分解模型基于用户的标签行为信息提出了一种新的推荐框架,解决社交网络中的好友
社交网络中基于张量分解的好友推荐
- 摘要
- 引言
- 相关研究
- 问题描述
- 所提好友推荐方法
- 实验验证
- 结论
摘要
社交网络中快速增长的用户对现有好友推荐系统提出了挑战。本文我们用张量分解模型基于用户的标签行为信息提出了一种新的推荐框架,解决社交网络中的好友推荐问题。该研究有两个主要贡献:(1)提出了一种新的张量模型来刻画社会化标签系统中用户、用户兴趣和朋友之间的潜在关联;(2)基于上述模型提出了一种新的好友推荐方法。在一个真实数据集上的实验表明所提算法由于当前最优算法。
引言
随着互联网上用户和电子媒体资源(音乐、照片和视频)的爆炸式增长,大量社交网络如Last.fm和Flickr已经使用社会化标签系统来组织大量数据。社会化标签系统允许用户使用他们最喜欢的词称作Tag来标记网上的资源。标签不仅仅可以完善那些难以直接抽取的多媒体数据的元信息,还可以表征用户的兴趣[1]。另一方面,用户想要找到有着相似兴趣的人,如Last.fm中的好友或者是Flickr中的联系人。但是现有好友推荐系统的结果常常不能让人满意。为一个用户找到新的合适的朋友,特别是在快速增长的社交网络中不是一件容易的事。解决该问题会有两个重要意义:首先,它帮助用户找到了新的有趣的多媒体资源。其次,这种推荐服务鼓励有着相似兴趣的用户之间的交流,提高了用户满意度,这也意味着网站更高的广告收益。
本文我们提出一种新的基于张量分解模型来进行用户推荐任务。所提框架包括三个阶段:(a)用张量分解模型构建用户-兴趣-朋友模型;(b)学习最优的模型参数;(c)为用户的新好友进行排序推荐。本文的贡献如下:(1)我们提出一种新的张量分解模型来刻画用户、用户兴趣和朋友之间的潜在关联;(2)基于该模型,我们提出一种新的方法为用户推荐有着相似兴趣的用户作为新朋友。
本文剩余部分结构如下。第二节我们综述了之前的相关工作。在第三节我们形式化定义了问题。我们在第四节介绍了用于好友推荐的框架。在第五节,我们用实验将所提方法与当前最优算法进行了比较。最后在第六节得出了结论
相关工作
到目前为止,社会化标签系统中已经提出了多种好友推荐方法[3]。大量现有的推荐系统是基于协同过滤的方法[4,5],它们广泛应用于Amazon和MovieLens中。此外,Google Follower Finder采用了一种基于社交图的方法[6]。这种方法仅仅利用社交图上的链接信息,基于用户的共同好友来预测新的好友。最近,Zhou[2]提出了一个社会化标签系统的两阶段框架(UR)。这种方法用标签来代表用户的兴趣,基于他们兴趣的
问题描述
通常一个社会化标签系统由实体(用户、标签和资源)和实体之间的关系(如用户之间的友谊)组成。我们定义虽有用户集合
给定一个用户
其中上标N表示的是推荐的用户数目。
所提好友推荐方法
基于张量分解的用户-兴趣-好友模型
之前的研究工作表明社会化标签可以表征用户在Web上的兴趣[1]。因此我们提出如下假设。
假设1. 用户的标签表征用户的兴趣。
在此假设下,我们可以将
假设2. 用户与其他有着相似兴趣的人交友。
结合假设1和2,我们可以构建一个三维张量集合以对用户,用户的兴趣和好友之间的关联进行建模,如命题1所述。
命题1.
一个三维张量

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。

选择PostgreSQL而非MySQL的场景包括:1)需要复杂查询和高级SQL功能,2)要求严格的数据完整性和ACID遵从性,3)需要高级空间功能,4)处理大数据集时需要高性能。PostgreSQL在这些方面表现出色,适合需要复杂数据处理和高数据完整性的项目。

MySQL数据库的安全可以通过以下措施实现:1.用户权限管理:通过CREATEUSER和GRANT命令严格控制访问权限。2.加密传输:配置SSL/TLS确保数据传输安全。3.数据库备份和恢复:使用mysqldump或mysqlpump定期备份数据。4.高级安全策略:使用防火墙限制访问,并启用审计日志记录操作。5.性能优化与最佳实践:通过索引和查询优化以及定期维护兼顾安全和性能。

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!