现场统计表空间很慢。 SELECT T1.TABLESPACE_NAME, TOTAL_SPACE, TOTAL_SPACE - FREE_SPACE USED_SPACE, FREE_SPACE FROM (SELECT TABLESPACE_NAME, SUM(BYTES) / 1024 / 1024/ 1024 TOTAL_SPACE FROM DBA_DATA_FILES GROUP BY TABLESPACE_NAME) T1, (SELECT
现场统计表空间很慢。SELECT T1.TABLESPACE_NAME,
TOTAL_SPACE,
TOTAL_SPACE - FREE_SPACE USED_SPACE,
FREE_SPACE
FROM (SELECT TABLESPACE_NAME, SUM(BYTES) / 1024 / 1024/ 1024 TOTAL_SPACE
FROM DBA_DATA_FILES
GROUP BY TABLESPACE_NAME) T1,
(SELECT TABLESPACE_NAME, SUM(BYTES) / 1024 / 1024/ 1024 FREE_SPACE
FROM DBA_FREE_SPACE
GROUP BY TABLESPACE_NAME) T2
WHERE T1.TABLESPACE_NAME = T2.TABLESPACE_NAME;
主要是这条SQL慢,花了五分半钟,看是和垃圾回收站相关的表。
SELECT TABLESPACE_NAME, SUM(BYTES) / 1024 / 1024/ 1024 FREE_SPACEFROM DBA_FREE_SPACE GROUP BY TABLESPACE_NAME
--------------------------------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem |
--------------------------------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 12 |00:05:29.43 | 561K| 102K| | | |
| 1 | HASH GROUP BY | | 1 | 7 | 12 |00:05:29.43 | 561K| 102K| 3532K| 1450K| 1099K (0)|
| 2 | VIEW | DBA_FREE_SPACE | 1 | 13208 | 35897 |00:05:29.42 | 561K| 102K| | | |
| 3 | UNION-ALL | | 1 | | 35897 |00:05:29.41 | 561K| 102K| | | |
| 4 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
| 5 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
| 6 | TABLE ACCESS CLUSTER | FET$ | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
| 7 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | 0 | | | |
|* 8 | TABLE ACCESS CLUSTER | TS$ | 0 | 1 | 0 |00:00:00.01 | 0 | 0 | | | |
|* 9 | INDEX UNIQUE SCAN | I_TS# | 0 | 1 | 0 |00:00:00.01 | 0 | 0 | | | |
|* 10 | INDEX UNIQUE SCAN | I_FILE2 | 0 | 1 | 0 |00:00:00.01 | 0 | 0 | | | |
| 11 | NESTED LOOPS | | 1 | 13126 | 13608 |00:00:00.18 | 1864 | 0 | | | |
| 12 | NESTED LOOPS | | 1 | 13126 | 13608 |00:00:00.16 | 1860 | 0 | | | |
|* 13 | TABLE ACCESS CLUSTER | TS$ | 1 | 12 | 12 |00:00:00.01 | 19 | 0 | | | |
| 14 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | 0 | | | |
|* 15 | FIXED TABLE FIXED INDEX | X$KTFBFE (ind:1) | 12 | 1059 | 13608 |00:00:00.15 | 1841 | 0 | | | |
|* 16 | INDEX UNIQUE SCAN | I_FILE2 | 13608 | 1 | 13608 |00:00:00.01 | 4 | 0 | | | |
|* 17 | HASH JOIN | | 1 | 80 | 22289 |00:05:29.22 | 559K| 102K| 2461K| 2461K| 2209K (0)|
| 18 | NESTED LOOPS | | 1 | 84 | 22289 |00:05:29.20 | 559K| 102K| | | |
|* 19 | HASH JOIN | | 1 | 5807 | 22289 |00:05:29.14 | 559K| 102K| 1557K| 1557K| 1673K (0)|
| 20 | TABLE ACCESS FULL | RECYCLEBIN$ | 1 | 5807 | 5807 |00:00:00.01 | 529 | 0 | | | |
| 21 | FIXED TABLE FULL | X$KTFBUE | 1 | 100K| 990K|00:05:28.61 | 558K| 102K| | | |
|* 22 | INDEX UNIQUE SCAN | I_FILE2 | 22289 | 1 | 22289 |00:00:00.04 | 4 | 0 | | | |
|* 23 | TABLE ACCESS CLUSTER | TS$ | 1 | 12 | 12 |00:00:00.01 | 19 | 0 | | | |
| 24 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | 0 | | | |
| 25 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
| 26 | NESTED LOOPS | | 1 | 968 | 0 |00:00:00.01 | 19 | 0 | | | |
| 27 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
| 28 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
|* 29 | TABLE ACCESS CLUSTER | TS$ | 1 | 1 | 0 |00:00:00.01 | 19 | 0 | | | |
| 30 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | 0 | | | |
| 31 | TABLE ACCESS CLUSTER | UET$ | 0 | 1 | 0 |00:00:00.01 | 0 | 0 | | | |
|* 32 | INDEX RANGE SCAN | I_FILE#_BLOCK# | 0 | 1 | 0 |00:00:00.01 | 0 | 0 | | | |
|* 33 | INDEX UNIQUE SCAN | I_FILE2 | 0 | 1 | 0 |00:00:00.01 | 0 | 0 | | | |
|* 34 | INDEX RANGE SCAN | RECYCLEBIN$_TS | 0 | 968 | 0 |00:00:00.01 | 0 | 0 | | | |
|* 35 | TABLE ACCESS BY INDEX ROWID| RECYCLEBIN$ | 0 | 2 | 0 |00:00:00.01 | 0 | 0 | | | |
--------------------------------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
8 - filter("TS"."BITMAPPED"=0)
9 - access("TS"."TS#"="F"."TS#")
10 - access("F"."TS#"="FI"."TS#" AND "F"."FILE#"="FI"."RELFILE#")
13 - filter((INTERNAL_FUNCTION("TS"."ONLINE$") AND "TS"."CONTENTS$"=0 AND "TS"."BITMAPPED"0))
15 - filter("TS"."TS#"="F"."KTFBFETSN")
16 - access("F"."KTFBFETSN"="FI"."TS#" AND "F"."KTFBFEFNO"="FI"."RELFILE#")
17 - access("TS"."TS#"="RB"."TS#")
19 - access("U"."KTFBUESEGTSN"="RB"."TS#" AND "U"."KTFBUESEGFNO"="RB"."FILE#" AND "U"."KTFBUESEGBNO"="RB"."BLOCK#")
22 - access("RB"."TS#"="FI"."TS#" AND "U"."KTFBUEFNO"="FI"."RELFILE#")
23 - filter((INTERNAL_FUNCTION("TS"."ONLINE$") AND "TS"."CONTENTS$"=0 AND "TS"."BITMAPPED"0))
29 - filter("TS"."BITMAPPED"=0)
32 - access("TS"."TS#"="U"."TS#")
33 - access("U"."TS#"="FI"."TS#" AND "U"."SEGFILE#"="FI"."RELFILE#")
34 - access("U"."TS#"="RB"."TS#")
35 - filter(("U"."SEGFILE#"="RB"."FILE#" AND "U"."SEGBLOCK#"="RB"."BLOCK#"))
SQL> purge dba_recyclebin;
SQL> SELECT TABLESPACE_NAME, SUM(BYTES) / 1024 / 1024/ 1024 FREE_SPACE
FROM DBA_FREE_SPACE
GROUP BY TABLESPACE_NAME;
SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SQL_ID 81s4p9cv3060h, child number 0
-------------------------------------
SELECT TABLESPACE_NAME, SUM(BYTES) / 1024 / 1024/ 1024 FREE_SPACE
FROM DBA_FREE_SPACE GROUP BY TABLESPACE_NAME
-----------------------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem |
-----------------------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 12 |00:00:00.18 | 2431 | | | |
| 1 | HASH GROUP BY | | 1 | 7 | 12 |00:00:00.18 | 2431 | 1903K| 1450K| 1103K (0)|
| 2 | VIEW | DBA_FREE_SPACE | 1 | 13208 | 13971 |00:00:00.18 | 2431 | | | |
| 3 | UNION-ALL | | 1 | | 13971 |00:00:00.18 | 2431 | | | |
| 4 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
| 5 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
| 6 | TABLE ACCESS CLUSTER | FET$ | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
| 7 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | | | |
|* 8 | TABLE ACCESS CLUSTER | TS$ | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
|* 9 | INDEX UNIQUE SCAN | I_TS# | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
|* 10 | INDEX UNIQUE SCAN | I_FILE2 | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
| 11 | NESTED LOOPS | | 1 | 13126 | 13971 |00:00:00.17 | 1864 | | | |
| 12 | NESTED LOOPS | | 1 | 13126 | 13971 |00:00:00.15 | 1860 | | | |
|* 13 | TABLE ACCESS CLUSTER | TS$ | 1 | 12 | 12 |00:00:00.01 | 19 | | | |
| 14 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | | | |
|* 15 | FIXED TABLE FIXED INDEX | X$KTFBFE (ind:1) | 12 | 1059 | 13971 |00:00:00.15 | 1841 | | | |
|* 16 | INDEX UNIQUE SCAN | I_FILE2 | 13971 | 1 | 13971 |00:00:00.01 | 4 | | | |
|* 17 | HASH JOIN | | 1 | 80 | 0 |00:00:00.01 | 529 | 1969K| 1969K| 360K (0)|
| 18 | NESTED LOOPS | | 1 | 84 | 0 |00:00:00.01 | 529 | | | |
|* 19 | HASH JOIN | | 1 | 5807 | 0 |00:00:00.01 | 529 | 1557K| 1557K| 496K (0)|
| 20 | TABLE ACCESS FULL | RECYCLEBIN$ | 1 | 5807 | 0 |00:00:00.01 | 529 | | | |
| 21 | FIXED TABLE FULL | X$KTFBUE | 0 | 100K| 0 |00:00:00.01 | 0 | | | |
|* 22 | INDEX UNIQUE SCAN | I_FILE2 | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
|* 23 | TABLE ACCESS CLUSTER | TS$ | 0 | 12 | 0 |00:00:00.01 | 0 | | | |
| 24 | INDEX FULL SCAN | I_TS# | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
| 25 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
| 26 | NESTED LOOPS | | 1 | 968 | 0 |00:00:00.01 | 19 | | | |
| 27 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
| 28 | NESTED LOOPS | | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
|* 29 | TABLE ACCESS CLUSTER | TS$ | 1 | 1 | 0 |00:00:00.01 | 19 | | | |
| 30 | INDEX FULL SCAN | I_TS# | 1 | 1 | 18 |00:00:00.01 | 1 | | | |
| 31 | TABLE ACCESS CLUSTER | UET$ | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
|* 32 | INDEX RANGE SCAN | I_FILE#_BLOCK# | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
|* 33 | INDEX UNIQUE SCAN | I_FILE2 | 0 | 1 | 0 |00:00:00.01 | 0 | | | |
|* 34 | INDEX RANGE SCAN | RECYCLEBIN$_TS | 0 | 968 | 0 |00:00:00.01 | 0 | | | |
|* 35 | TABLE ACCESS BY INDEX ROWID| RECYCLEBIN$ | 0 | 2 | 0 |00:00:00.01 | 0 | | | |
-----------------------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
8 - filter("TS"."BITMAPPED"=0)
9 - access("TS"."TS#"="F"."TS#")
10 - access("F"."TS#"="FI"."TS#" AND "F"."FILE#"="FI"."RELFILE#")
13 - filter((INTERNAL_FUNCTION("TS"."ONLINE$") AND "TS"."CONTENTS$"=0 AND "TS"."BITMAPPED"0))
15 - filter("TS"."TS#"="F"."KTFBFETSN")
16 - access("F"."KTFBFETSN"="FI"."TS#" AND "F"."KTFBFEFNO"="FI"."RELFILE#")
17 - access("TS"."TS#"="RB"."TS#")
19 - access("U"."KTFBUESEGTSN"="RB"."TS#" AND "U"."KTFBUESEGFNO"="RB"."FILE#" AND "U"."KTFBUESEGBNO"="RB"."BLOCK#")
22 - access("RB"."TS#"="FI"."TS#" AND "U"."KTFBUEFNO"="FI"."RELFILE#")
23 - filter((INTERNAL_FUNCTION("TS"."ONLINE$") AND "TS"."CONTENTS$"=0 AND "TS"."BITMAPPED"0))
29 - filter("TS"."BITMAPPED"=0)
32 - access("TS"."TS#"="U"."TS#")
33 - access("U"."TS#"="FI"."TS#" AND "U"."SEGFILE#"="FI"."RELFILE#")
34 - access("U"."TS#"="RB"."TS#")
35 - filter(("U"."SEGFILE#"="RB"."FILE#" AND "U"."SEGBLOCK#"="RB"."BLOCK#"))

要优化MySQL慢查询,需使用slowquerylog和performance_schema:1.启用slowquerylog并设置阈值,记录慢查询;2.利用performance_schema分析查询执行细节,找出性能瓶颈并优化。

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。

MySQL异步主从复制通过binlog实现数据同步,提升读性能和高可用性。1)主服务器记录变更到binlog;2)从服务器通过I/O线程读取binlog;3)从服务器的SQL线程应用binlog同步数据。

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL的安装和基本操作包括:1.下载并安装MySQL,设置根用户密码;2.使用SQL命令创建数据库和表,如CREATEDATABASE和CREATETABLE;3.执行CRUD操作,使用INSERT,SELECT,UPDATE,DELETE命令;4.创建索引和存储过程以优化性能和实现复杂逻辑。通过这些步骤,你可以从零开始构建和管理MySQL数据库。

InnoDBBufferPool通过将数据和索引页加载到内存中来提升MySQL数据库的性能。1)数据页加载到BufferPool中,减少磁盘I/O。2)脏页被标记并定期刷新到磁盘。3)LRU算法管理数据页淘汰。4)预读机制提前加载可能需要的数据页。

MySQL适合初学者使用,因为它安装简单、功能强大且易于管理数据。1.安装和配置简单,适用于多种操作系统。2.支持基本操作如创建数据库和表、插入、查询、更新和删除数据。3.提供高级功能如JOIN操作和子查询。4.可以通过索引、查询优化和分表分区来提升性能。5.支持备份、恢复和安全措施,确保数据的安全和一致性。

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

记事本++7.3.1
好用且免费的代码编辑器