Mongodb是针对大数据量环境下诞生的用于保存大数据量的非关系型数据库,针对大量的数据,如何进行统计操作至关重要,那么如何从Mongodb中统计一些数据呢? 在Mongodb中,给我们提供了三种用于数据聚合的方式: (1)简单的用户聚合函数; (2)使用aggregate
Mongodb是针对大数据量环境下诞生的用于保存大数据量的非关系型数据库,针对大量的数据,如何进行统计操作至关重要,那么如何从Mongodb中统计一些数据呢?
在Mongodb中,给我们提供了三种用于数据聚合的方式:
(1)简单的用户聚合函数;
(2)使用aggregate进行统计;
(3)使用mapReduce进行统计;
今天我们首先来讲讲mapReduce是如何统计,在后续的文章中,将另起文章进行相关说明。
MapReduce是啥呢?以我的理解,其实就是对集合中的各个满足条件的文档进行预处理,整理出想要的数据然后进行统计得到最终的统计结果。其中map函数用于对集合中的各个满足条件的文档进行预处理,整理出想要的数据。Reduce函数用于对整理出的数据进行处理得到统计结果。Map函数和Reduce函数都是JavaScript函数。
首先,我们先构造一个测试数据集test,使用js脚本往集合中随机插入一组数据,每条记录是哪个人花了多少钱买了什么东西。具体脚本test1.js如下:
<span style="font-size:18px;">for( var i=0; i=3 && rID=5 && rID</span>
接下来我们通过在控制台执行脚本来向数据库插入具体的数据,具体执行指令如下:
<span style="font-size:18px;">mongo 127.0.0.1:27017/test J:/test1.js</span>
执行之后,通过MongoVUE来查看下具体的数据,如下所示,数据已经插入到集合中了:
接下来,我们可以做几个简单的统计操作了。
(1)统计不同用户都买了多少个商品?编写js脚本test2.js,将结果保存到statis1集合中。
<span style="font-size:18px;"><span style="font-size:18px;">map=function(){ emit(this.user,1); } reduce=function(key, values){ var count = 0; values.forEach(function(val){count += val}); return count; } db.test.mapReduce(map, reduce, {out:"statics1"});</span></span>
按照刚才执行脚本的方式执行test2.js,并查看数据:

从数据库就可以直观看到统计数据了,若想查看某个人如majing购买了多少个商品,直接使用
<span style="font-size:18px;"><span style="font-size:18px;"><span style="font-family:KaiTi_GB2312;font-size:18px;">db.statics1.find({"_id":"majing"});</span></span></span>
脚本test3.js如下所示:
<span style="font-size:18px;"><span style="font-size:18px;">map=function(){ emit({user:this.user,sku:this.sku},1); } reduce=function(key, values){ var count = 0; values.forEach(function(val){count += val}); return count; } db.test.mapReduce(map, reduce, {out:"statics2"});</span></span>
总共返回了10条记录。此时如果我们想查找某个用户购买商品的情况,可以使用下面的查询方法:
<span style="font-size:18px;"><span style="font-size:18px;">db.statics2.find({"_id.user":"majing"});</span></span>

如果我们想查找某个用户购买某个商品的情况,可以使用下面的查询方法:
(3)统计每个用户购买商品的总量及花费的总金额
脚本test4.js如下所示:
<span style="font-size:18px;"><span style="font-size:18px;">map=function(){ emit({user:this.user},{totalprice:this.price,count:1}); } reduce=function(key, values){ var res = {totalprice:0.00,count:1}; values.forEach(function(val){res.totalprice += val.totalprice;res.count+=val.count;}); return res; } db.test.mapReduce(map, reduce, {out:"statics3"});</span></span>
按照刚才执行脚本的方式执行test4.js,并查看数据:

(4)统计每个用户购买商品的平均价钱
在这个情景下,我们需要用到说道mapReduce里的另一个参数finalize,该参数是一个javascript脚本函数,用于对reduce后的集合进行一个后期处理操作。
执行脚本test5.js,具体如下所示:
<span style="font-size:18px;"><span style="font-size:18px;">map=function(){ emit({user:this.user},{totalprice:this.price,count:1}); } reduce=function(key, values){ var res = {totalprice:0.00,count:1,average:0}; values.forEach(function(val){res.totalprice += val.totalprice;res.count+=val.count;}); return res; } finalizeFunc=function(key,reduceResult){ reduceResult.totalprice=(reduceResult.totalprice).toFixed(2); reduceResult.average=(reduceResult.totalprice/reduceResult.count).toFixed(2); return reduceResult; } db.test.mapReduce(map, reduce, {out:"statics4",finalize:finalizeFunc});</span></span>
执行之后查看得到的数据,具体如下所示,显示了总价钱,商品数量和商品单价。
如果想查找某个人的,可以和上面的查询方法一样,使用find()方法进行查询:
<span style="font-size:18px;"><span style="font-size:18px;">db.statics4.find({"_id.user":"majing"});</span></span>
以上通过4个简单的例子对Mongodb中的MapReduce进行了简单的说明,当然MapReduce功能很强大,大家如果想知道其他高级的使用方法,可以到Mongodb的官网进行查阅和学习,网址为 https://docs.mongodb.com/manual/reference/method/db.collection.mapReduce/ ,谢谢。

mongodb php扩展没有的解决办法:1、在linux中执行“$ sudo pecl install mongo”命令来安装MongoDB的PHP扩展驱动;2、在window中,下载php mongodb驱动二进制包,然后在“php.ini”文件中配置“extension=php_mongo.dll”即可。

Redis和MongoDB都是流行的开源NoSQL数据库,但它们的设计理念和使用场景有所不同。本文将重点介绍Redis和MongoDB的区别和使用场景。Redis和MongoDB简介Redis是一个高性能的数据存储系统,常被用作缓存和消息中间件。Redis以内存为主要存储介质,但它也支持将数据持久化到磁盘上。Redis是一款键值数据库,它支持多种数据结构(例

MongoDB是一种高性能、开源、文档型的NoSQL数据库,被广泛应用于Web应用、大数据以及云计算领域。而Go语言则是一种快速、开发效率高、代码可维护性强的编程语言。本文将为您完整介绍如何在Go语言中使用MongoDB。一、安装MongoDB在使用MongoDB之前,需要先在您的系统中安装MongoDB。在Linux系统下,可以通过如下命令安装:sudo

php7.0安装mongo扩展的方法:1、创建mongodb用户组和用户;2、下载mongodb源码包,并将源码包放到“/usr/local/src/”目录下;3、进入“src/”目录;4、解压源码包;5、创建mongodb文件目录;6、将文件复制到“mongodb/”目录;7、创建mongodb配置文件并修改配置即可。

MongoDB作为一款流行的NoSQL数据库,已经被广泛应用于各种大型Web应用和企业级应用中。而PHP语言也作为一种流行的Web编程语言,与MongoDB的结合也变得越来越重要。在本文中,我们将会学习如何使用PHP语言操作MongoDB数据库进行增删查改的操作。

自定义Appender非常简单,继承一下AppenderBase类即可。可以看到有个AppenderBase,有个UnsynchronizedAppenderBase,还有个AsyncAppenderBase继承了UnsynchronizedAppenderBase。从名字就能看出来区别,异步的、普通的、不加锁的。我们定义一个MongoDBAppender继承UnsynchronizedAppenderBasepublicclassMongoDBAppenderextendsUnsynchron

在现代企业应用程序开发中,需要处理海量数据和高并发的访问请求。为了满足这些需求,开发人员需要使用高性能的数据库系统,以确保系统的稳定性和可扩展性。本文将介绍如何使用Swoole和MongoDB构建高性能的文档数据库系统。Swoole是一个基于PHP语言开发的异步网络通信框架,它能够大大提高PHP应用程序的性能和并发能力。MongoDB是一种流行的文档数据库,

Python服务器编程:MongoDB数据库使用攻略MongoDB是一种NoSQL数据库,相比传统的关系型数据库,在某些场景下具有明显的优势。本文将介绍如何在Python服务器端使用MongoDB数据库,包括安装、连接、基本操作和查询优化等方面。一、安装MongoDB数据库MongoDB官网提供了各种操作系统下的安装包,这里我们选择在Ubuntu上安装。打开


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),