如何去除相似度较高的内容?可以不择手段!
如下面三条笑话几乎是一样的,只是个别符号和换行不换行的差别。假设现在有30万条数据,其中有几万条是这样具有高相似度的,我要怎么做才能把这些数据筛选出来?
可以不择手段,最好是PHP/MySQL,客户端之类的。
哥应邀参加前任婚礼,和一帮陌生人坐一桌, 旁边一哥们问我是新娘什么人? 我回答,我只是来看一下以前战斗过的地方! 没想到一桌子的人举起酒杯:
大家都是战友,干杯,多喝点,一会讨论战斗经验!
哥应邀参加前任婚礼,和一帮陌生人坐一桌,旁边一哥们问我:“是新娘什么人?” 我回答,我只是来看一下以前战斗过的地方!
没想到一桌子的人举起酒杯:“大家都是战友,干杯,多喝点,一会讨论战斗经验!”
哥应邀参加前任婚礼,和一帮陌生人坐一桌,旁边一哥们问我是新娘什么人?我回答,我只是来看一下以前战斗过的地方!没想到一桌子的人举起酒杯:大家都是战友,干杯,多喝点,一会讨论战斗经验!
回复内容:
如何去除相似度较高的内容?可以不择手段!
如下面三条笑话几乎是一样的,只是个别符号和换行不换行的差别。假设现在有30万条数据,其中有几万条是这样具有高相似度的,我要怎么做才能把这些数据筛选出来?
可以不择手段,最好是PHP/MySQL,客户端之类的。
哥应邀参加前任婚礼,和一帮陌生人坐一桌, 旁边一哥们问我是新娘什么人? 我回答,我只是来看一下以前战斗过的地方! 没想到一桌子的人举起酒杯:
大家都是战友,干杯,多喝点,一会讨论战斗经验!
哥应邀参加前任婚礼,和一帮陌生人坐一桌,旁边一哥们问我:“是新娘什么人?” 我回答,我只是来看一下以前战斗过的地方!
没想到一桌子的人举起酒杯:“大家都是战友,干杯,多喝点,一会讨论战斗经验!”
哥应邀参加前任婚礼,和一帮陌生人坐一桌,旁边一哥们问我是新娘什么人?我回答,我只是来看一下以前战斗过的地方!没想到一桌子的人举起酒杯:大家都是战友,干杯,多喝点,一会讨论战斗经验!
只回答相似度处理
与 similar_text()
函数相比,levenshtein()
函数更快,但similar_text()
函数能通过更少的必需修改次数提供更精确的结果,在追求速度而少精确度,并且字符串长度有限时可以考虑使用 levenshtein()
函数,而且 similar_text()
对中文支持的并不好
最后留一个自己捣鼓的: 通过余弦定理+分词计算文本相似度PHP版
https://github.com/xiaobeicn/text-similarity-php
要求不高的话直接用similar_text
吧,DEMO: http://3v4l.org/iBXvC
如果只是多出几个标点符号、换行的话,那可以去掉那些符号、换行,然后比较字符串md5的值。当然,如果文字的顺序变大很大,这个也就不行了
说白了就是文章摘要算法 如果是我的话分词肯定不够 还要上词性分析 留下名词动词做特征能更准一些
我给你一个我认为最靠谱的方案
(1)对文章进行词性划分,只保留动词和名词部分,比如
哥应邀参加前任婚礼,和一帮陌生人坐一桌, 旁边一哥们问我是新娘什么人? 我回答,我只是来看一下以前战斗过的地方! 没想到一桌子的人举起酒杯:
大家都是战友,干杯,多喝点,一会讨论战斗经验!
这段文字我认为特征是 婚礼 新娘 战斗 就被 经验 战友
(2)你需要很多的例子,比如10000篇,根据这一万篇,大致推断整个30万文本中所有可能重要的词汇,根据经验这个个词汇表如果不处理会超过10w个
(3)使用特征提取算法精简词汇表,至于怎么特征提取这至少是烟酒生课程才会讲的,都是数学,这样你会把10w个词缩减到3000左右
(4)用这3000个词表示每一个文本,比如w1=[0,0,1,1,.....0,..1,,0...1..0...]我们不考虑词频,这样的数据结构用位图非常容易转化为字符串
(5)使用Hash表对所有文本进行去重
这样的效率是最高的,但是肯定有误差,因为特征提取本身就是信息量减少的过程,来换取最快的速度,但是可以做到任何一个新文本来,分词的过程不计,几乎是O(1)的时间复杂度
再提供一种思路:去掉所有标点符号、空格以及换行符之后用动态规划算法计算“编辑距离/Levenshtein距离”(即把字符串s1经过变换得到s2的最少编辑次数,其中一次编辑可以是添加一个字符、删除一个字符或者修改一个字符)。比较容易实现,效率也不错(大约就是O(N^2)其中N是字符串长度)
这个算法貌似是信息学竞赛的经典算法,搜一下“字符串编辑距离”应该就能找到(维基百科也有),如果不想用库的话可以考虑该方法
我想说的也是编辑距离,楼上已经说了。
http://www.cnblogs.com/liangxiaxu/archive/2012/05/05/2484972.html
余弦定理和simhash都不错,后者是谷歌发明的

PHP在电子商务、内容管理系统和API开发中广泛应用。1)电子商务:用于购物车功能和支付处理。2)内容管理系统:用于动态内容生成和用户管理。3)API开发:用于RESTfulAPI开发和API安全性。通过性能优化和最佳实践,PHP应用的效率和可维护性得以提升。

PHP可以轻松创建互动网页内容。1)通过嵌入HTML动态生成内容,根据用户输入或数据库数据实时展示。2)处理表单提交并生成动态输出,确保使用htmlspecialchars防XSS。3)结合MySQL创建用户注册系统,使用password_hash和预处理语句增强安全性。掌握这些技巧将提升Web开发效率。

PHP和Python各有优势,选择依据项目需求。1.PHP适合web开发,尤其快速开发和维护网站。2.Python适用于数据科学、机器学习和人工智能,语法简洁,适合初学者。

PHP仍然具有活力,其在现代编程领域中依然占据重要地位。1)PHP的简单易学和强大社区支持使其在Web开发中广泛应用;2)其灵活性和稳定性使其在处理Web表单、数据库操作和文件处理等方面表现出色;3)PHP不断进化和优化,适用于初学者和经验丰富的开发者。

PHP在现代Web开发中仍然重要,尤其在内容管理和电子商务平台。1)PHP拥有丰富的生态系统和强大框架支持,如Laravel和Symfony。2)性能优化可通过OPcache和Nginx实现。3)PHP8.0引入JIT编译器,提升性能。4)云原生应用通过Docker和Kubernetes部署,提高灵活性和可扩展性。

PHP适合web开发,特别是在快速开发和处理动态内容方面表现出色,但不擅长数据科学和企业级应用。与Python相比,PHP在web开发中更具优势,但在数据科学领域不如Python;与Java相比,PHP在企业级应用中表现较差,但在web开发中更灵活;与JavaScript相比,PHP在后端开发中更简洁,但在前端开发中不如JavaScript。

PHP和Python各有优势,适合不同场景。1.PHP适用于web开发,提供内置web服务器和丰富函数库。2.Python适合数据科学和机器学习,语法简洁且有强大标准库。选择时应根据项目需求决定。

PHP是一种广泛应用于服务器端的脚本语言,特别适合web开发。1.PHP可以嵌入HTML,处理HTTP请求和响应,支持多种数据库。2.PHP用于生成动态网页内容,处理表单数据,访问数据库等,具有强大的社区支持和开源资源。3.PHP是解释型语言,执行过程包括词法分析、语法分析、编译和执行。4.PHP可以与MySQL结合用于用户注册系统等高级应用。5.调试PHP时,可使用error_reporting()和var_dump()等函数。6.优化PHP代码可通过缓存机制、优化数据库查询和使用内置函数。7


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。