搜尋

首頁  >  問答  >  主體

node.js - Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程/多进程还有存在的必要吗?

最近正在学习Python中的异步编程,看了一些博客后做了一些小测验:对比asyncio+aiohttp的爬虫和asyncio+aiohttp+concurrent.futures(线程池/进程池)在效率中的差异,注释:在爬虫中我几乎没有使用任何计算性任务,为了探测异步的性能,全部都只是做了网络IO请求,就是说aiohttp把网页get完就程序就done了。

结果发现前者的效率比后者还要高。我询问了另外一位博主,(提供代码的博主没回我信息),他说使用concurrent.futures的话因为我全部都是IO任务,如果把这些IO任务分散到线程池/进程池,反而多线程/多进程之间的切换开销还会降低爬虫的效率。我想了想的确如此。

那么我的问题是:仅仅在爬取网页的过程中,就是request.get部分,多线程肯定是没有存在的必要了,因为GIL这个大坑,进程池可能好点,但是性能还是不如异步爬虫,而且更加浪费资源。既然这样,是不是以后在爬虫的爬取网页阶段我们完全都可以用兴起的asyncio+aiohttp代替。(以及其他IO任务比如数据库/文件读写)

当然在数据处理阶段还是要采用多进程,但是我觉得多线程是彻底没用了,原本它相比多进程的优势在于IO型任务,现看来在它的优势完全被异步取代了。(当然问题建立在不考虑兼容2.x)

注:还有一个额外的问题就是,看到一些博客说requests库不支持异步编程是什么意思,为了充分发回异步的优势应该使用aiohttp,我没有看过requests的源代码,但是一些结果显示aiohttp的性能确实更好,各位网友能解释一下吗?

代码

asyncio+aiohttp

import aiohttp


async def fetch_async(a):
    async with aiohttp.request('GET', URL.format(a)) as r:
        data = await r.json()
    return data['args']['a']
    
start = time.time()
event_loop = asyncio.get_event_loop()
tasks = [fetch_async(num) for num in NUMBERS]
results = event_loop.run_until_complete(asyncio.gather(*tasks))

for num, result in zip(NUMBERS, results):
    print('fetch({}) = {}'.format(num, result))

asyncio+aiohttp+线程池比上面要慢1秒

async def fetch_async(a):
    async with aiohttp.request('GET', URL.format(a)) as r:
        data = await r.json()
    return a, data['args']['a']


def sub_loop(numbers):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    tasks = [fetch_async(num) for num in numbers]
    results = loop.run_until_complete(asyncio.gather(*tasks))
    for num, result in results:
        print('fetch({}) = {}'.format(num, result))


async def run(executor, numbers):
    await asyncio.get_event_loop().run_in_executor(executor, sub_loop, numbers)


def chunks(l, size):
    n = math.ceil(len(l) / size)
    for i in range(0, len(l), n):
        yield l[i:i + n]                                                     

event_loop = asyncio.get_event_loop()
tasks = [run(executor, chunked) for chunked in chunks(NUMBERS, 3)]
results = event_loop.run_until_complete(asyncio.gather(*tasks))

print('Use asyncio+aiohttp+ThreadPoolExecutor cost: {}'.format(time.time() - start))

传统的requests + ThreadPoolExecutor比上面慢了3倍

import time
import requests
from concurrent.futures import ThreadPoolExecutor

NUMBERS = range(12)
URL = 'http://httpbin.org/get?a={}'

def fetch(a):
    r = requests.get(URL.format(a))
    return r.json()['args']['a']

start = time.time()
with ThreadPoolExecutor(max_workers=3) as executor:
    for num, result in zip(NUMBERS, executor.map(fetch, NUMBERS)):
        print('fetch({}) = {}'.format(num, result))

print('Use requests+ThreadPoolExecutor cost: {}'.format(time.time() - start))

补充

以上问题建立在CPython,至于我喜欢用多线程,不喜欢协程风格这类型的回答显然不属于本题讨论范畴。我主要想请教的是:
如果Python拿不下GIL,我认为未来理想的模型应该是多进程 + 协程(asyncio+aiohttp)。uvloop和sanic以及500lines一个爬虫项目已经开始这么干了。不讨论兼容型问题,上面的看法是否正确,有一些什么场景协程无法取代多线程。

异步有很多方案,twisted, tornado等都有自己的解决方案,问题建立在asyncio+aiohttp的协程异步。

还有一个问题也想向各位网友请教一下

阿神阿神2828 天前1157

全部回覆(6)我來回復

  • 伊谢尔伦

    伊谢尔伦2017-04-18 10:18:50

    對Python爬蟲的了解的不多,但是一般做爬蟲不是用Scrapy的嗎.那個本身就是基於twisted異步框架的.

    多進程可以充分利用多核心,目前來說理想的是多進程+協程.

    因為requests中還是使用同步的方法,所以會阻塞線程,這樣的話用異步也沒有意義了.你可以理解成在asyncio中使用time.sleep方法而不是asyncio.sleep方法.

    回覆
    0
  • 伊谢尔伦

    伊谢尔伦2017-04-18 10:18:50

    看看這篇文章: http://aosabook.org/en/500L/a...

    回覆
    0
  • PHP中文网

    PHP中文网2017-04-18 10:18:50

    asyncio採用的是協程的思想,就是在一個執行緒中處理多個非同步任務。非同步任務有那些呢,例如定時異步IO等等。

    但是如果任務不支援非同步呢?

    例如讀寫一個阻塞IO,或是進項耗時的大量的計算。 協程就會任務阻塞問題,多進程多執行緒的優點就體現出來了。

    兩者的使用場景不一樣。不同場景,不同方案。

    回覆
    0
  • PHP中文网

    PHP中文网2017-04-18 10:18:50

    asyncio需要相關的第三方的庫支持,所以,基本上原來有的第三方庫都需要單獨寫,如串口,網絡協議,包括requests和http這些,不好,好的情況下,經過這兩個版本的時間,很多用到的函式庫都已經有了異步的了。包括requests.

    回覆
    0
  • PHPz

    PHPz2017-04-18 10:18:50

    asyncio 需要非同步的 API 來配對(同步非阻塞 API 也可以,但是 Python 沒有setInterval這種東西,可能需要 Hack 一下)。

    如果是同步阻塞的 API,一個回呼卡了其它回呼都不能執行。你可以看一看,你到目前見到的 IO API 基本上都是阻塞的。

    回覆
    0
  • 黄舟

    黄舟2017-04-18 10:18:50

    Python多執行緒由於GIL的存在並不實用,但多進程還是很有用的

    回覆
    0
  • 取消回覆