搜尋

首頁  >  問答  >  主體

php - 1亿个32位的md5的密码值,怎样查询其中一个md5值是否存在效率最快?

采用那种存储最好?比如只需检测这个数据库中是否存在一个“9d97c57dfc685f9b10d8d1b944330c09”即可,返回true or false

PHPzPHPz2846 天前785

全部回覆(6)我來回復

  • 天蓬老师

    天蓬老师2017-04-10 14:45:07

    你的业务模型不清晰,没法得到一个好的回答,我说几个方法并说明优缺点吧

    1. 排序并顺序存储到硬盘,就32bit32bit32bit去顺序存储即可。搜索采用最简单的二分查找(号称90%的程序员面试的时候写不出正确的二分查找,不过你可以找个现成的)。时间复杂度O(logn),简直飞快无比
      优点:速度很快,磁盘空间压缩到极限,无内存占用
      缺点:需要先做一次全排列(还好,一劳永逸)很难加入新的索引值(每次加入都要重排列,关键是需要重写去dump磁盘)
      结论:适合不再变动的数据

    2. 布隆过滤器。具体实现Google啊,比如这里有个Python版的实现
      优点:速度比较快,良好的插入性能
      缺点:有错误率,虽然可控
      结论:适合不是100%精确的需求,适合经常变动的数据

    3. 分片(类似于1楼的办法)先哈希,然后取模,比如5000,拆分成5000个子文件。然后各子文件分别排序。查找时对key做hash并取模,找到对应的子文件,然后再二分查找。当然MD5一般可以认为是哈希均匀的,那么就不用哈希,直接取模就好了。
      优点:速度不错且插入性能还可以(单次插入只用对单个分片进行插入排序)
      缺点:貌似没啥缺点,比较折衷

    4. 纯Hash表,这个就不用说了吧,把所有数据读到内存中,建立哈希表(一亿的话,哈希表不大,也就几个G)
      优点:时间复杂度O(1),呵呵 插入复杂度O(1)
      缺点:内存占用。。。
      结论:除了需要花钱,所有性能都是No1

    最终结论:

    1. 源数据永不变动,那就第一方案
    2. 不要求100%精确,那就第二方案
    3. 有钱买内存,就第四方案
    4. 普通人,第三方案

    上面的几种方法逻辑都非常简单,实现起来很快的。有时间可以都实现下,测一测性能。

    补充,Hash表到底有多快。。

    生成1000w 随机字符串(单行长度32字节)

    $ head -1 1000w
    bCxshZTroH6OukITgLsCccK9SlBd7CHL
    

    取后100条字符串(grep的最坏情况)

    $ tail -100 1000w> q100
    $ time (cat q100 | while read line;do grep -Fx $line 1000w >/dev/null;done)
     6.87s user 7.36s system 99% cpu 14.322 total
    

    可以看到grep最坏性能是 7req/s,时间复杂度是O(n)

    使用awk评估hash表的性能(awk的dict是hash表实现的)

    $ time awk 'ARGIND==1{a[$0]}' 1000w
    14.24s user 0.61s system 99% cpu 14.861 total 
    

    可以看到哈希表的载入时间是15s,注意写成服务的话载入一次就够了,所以载入时间是不算的

    查询性能,我们直接全量查询

    $ time awk 'ARGIND==1{a[$0]} ARGIND>1&&($0 in a){print $0}' 1000w 1000w >/dev/null
    27.88s user 0.73s system 99% cpu 28.734 total
    

    hash表的性能是 10000000/(28.734 - 14.861) = 720824req/s 是grep的10w倍,时间复杂度是O(1)

    回覆
    0
  • 怪我咯

    怪我咯2017-04-10 14:45:07

    本人算法比较差,给一个我的简单思路
    用过git的都知道,git的object对象名就是一个哈希值(sha-1)的后38位,
    git的objects目录里的子目录,是objects对象的哈希值的前两位
    查找一个objects对象,先根据前两位找到对应目录,再去目录下找具体文件
    如下是git objects目录下的部分显示:

    00  06  0c  12  18  1e  24  2a  30  36  3c  42  48  4e  54  5a  60  66  6c  72  78  
    

    这样就能保证数据被比较均匀的分散在不同的目录里

    同理,你可以在你的数据库中创建一些这样的表
    比如 md5_3e,md5_06,...
    当你想查找 3eabecb5ff177ebadd305fe52e278d92df3754是否存在
    首先看存在表md5_3e吗,如果存在,则继续在md5_3e里查看是否存在abecb5ff177ebadd305fe52e278d92df3754 这样的值

    此方案中,每个表大概存储数据为30多万,给字段加上索引,查询速度肯定飞快的

    这是我的思路,应该也算最简单的能实现需求的方法

    回覆
    0
  • 怪我咯

    怪我咯2017-04-10 14:45:07

    楼主可以去研究下bit-map的相关东西,对你的问题很有帮助哦。

    回覆
    0
  • PHP中文网

    PHP中文网2017-04-10 14:45:07

    可以试下布隆过滤器,bloom filter,在判断一个元素是否属于某个集合时,有可能把不属于这个集合的元素误认为属于这个集合,但不会把属于这个集合的元素误认为不属于这个集合,不适合零错误的场景

    回覆
    0
  • 黄舟

    黄舟2017-04-10 14:45:07

    可以試試基於二分法的存儲結構。

    比如 B-樹等

    詳見 http://blog.csdn.net/v_july_v/article/details/6530142

    回覆
    0
  • PHPz

    PHPz2017-04-10 14:45:07

    几万亿个密码都可以秒查,你可以看看 http://www.ttmd5.com

    回覆
    0
  • 取消回覆