搜尋

首頁  >  問答  >  主體

javascript - 求這個演算法如何實現?

資料格式如下:

[
  {
    "event": {
      "id": "2013",
      "startTime": "00:57:00",
      "endTime": "07:56:00",
      "title": "list 1",
      "backgroundColor": "#f6c79f",
      "textColor": "#8c725b",
      "order": 2014
    }
  },
  {
    "event": {
      "id": "2016",
      "startTime": "00:51:59",
      "endTime": "06:57:00",
      "title": "list 2",
      "backgroundColor": "#a7bff7",
      "textColor": "#5f6d8c",
      "order": 2017
    }
  },
  {
    "event": {
      "id": "2019",
      "startTime": "00:11:00",
      "endTime": "11:35:00",
      "title": "list 3",
      "backgroundColor": "#beea91",
      "textColor": "#728c57",
      "order": 2020
    }
  },
  {
    "event": {
      "id": "2022",
      "startTime": "09:01:00",
      "endTime": "13:18:00",
      "title": "list 4",
      "backgroundColor": "#d1b1ff",
      "textColor": "#73618c",
      "order": 2023
    }
  }
]

需求描述:
在1天的座標地圖上(00:00 - 24:00),繪製每個數據,

可能得示意圖如下:

1.根據資料的startTimeendTime可以求資料在Y 軸上的座標(表現為top以及height值,已實作

2.由於每個時間段都可能相交(一個事件的時間段(startTime - endTime)的一部分在另一個一個事件的時間段中,叫做相交),則在X 軸上相交的事件平分X軸的寬度(表現為left和width值)
2.1.如果一個事件沒有與任何事件相交,則這個事件的寬度是100%
2.2 如果相交平分的話,必須order越大,位置越靠前
2.3 一個事件可能和另一個事件相交,也可能和另外幾個事件相交

我的問題是如何實現X軸平分寬度且定位left的演算法?也就是每個元素的left和width值得演算法

補充內容:A與B相交,B與C相交,A與C不相交,則ABC也是平分

ringa_leeringa_lee2791 天前607

全部回覆(3)我來回復

  • PHP中文网

    PHP中文网2017-05-18 10:55:41

    大致寫了一下,基本思路是

    1. 先將全部task依order從大到小排序(此部分省略)

    2. 按start end產生task對象, 使用figure對象的add_one,依序加入figure。

    3. 插入一個對象時,判斷已有對像中與其相重疊的對象,使其left為最大的重疊對象的left+1,同時更新最大width

    4. 最後使用is_overlap方法檢測tasks中的沒有與任何事件相交的事件,並標記出來,這些事件left設為0,width設為100%,除了這些事件以外的事件,寬度設為1/max_width, left設為1/max_width*(left-1) (這部省略)

    以下代碼為2和3的步驟

    function task(start, end) {
        var _this = this;
        this.start = start;
        this.end = end;
        this.left = 0;
        this.width = 0;
        this.is_overlap = function (t1, t2) {
            return !((t1 < _this.start && t2 < _this.start ) || (t1 > _this.end && t2 > _this.end));
        }
    }
    
    function figure() {
        var _this = this;
        this.tasks = [];
        this.max_width = 0;
        this.add_one = function (obj) {
            var overlap = [];
            var max_left = 0;
            for(var i = 0; i < _this.tasks.length; i++) {
                if (_this.tasks[i].is_overlap(obj.start, obj.end)){
                    overlap.push(_this.tasks[i]);
                }
            }
            for(var i = 0; i < overlap.length; i++) {
                max_left = Math.max(overlap[i].left, max_left);
            }
            obj.left = max_left + 1;
            _this.max_width = Math.max(obj.left, _this.max_width);
            _this.tasks.push(obj);
        }
    }
    
    var fig = new figure();
    var tasks = [];
    tasks[0] = new task(3, 10);
    tasks[1] = new task(8, 14);
    tasks[2] = new task(5, 12);
    tasks[3] = new task(2, 9);
    tasks[4] = new task(18, 21);
    // tasks[0] = new task(9, 15);
    // tasks[1] = new task(0, 22);
    // tasks[2] = new task(3, 7);
    // tasks[3] = new task(9, 15);
    
    for (var i = 0; i< tasks.length; i++){
        fig.add_one(tasks[i]);
    }
    
    for (var i = 0; i< fig.tasks.length; i++){
        console.log('index: '+ i +'  left: ' + fig.tasks[i].left);
    }
    console.log('width :'+fig.max_width);
    

    回覆
    0
  • 某草草

    某草草2017-05-18 10:55:41

    二維分組

    • 先縱向分組(VGroups)。凡之間有相交關係的事件分入同一組。各組之間是獨立的(組間不相交)。分組演算法是:將每個事件看做節點,若兩個節點相交,則連一邊。這樣得到一個圖,分組即求此圖的連通分量。可以用深度優先搜尋或廣度優先搜尋等演算法求連通分量。

    • 縱向組內再橫向分組(HGroups)。凡之間沒有相交關係的事件分入同一組(組內不相交)。這一步的作用是壓縮可以並列顯示的事件數,利用沒有佔用的空間。

    這樣在縱橫兩個維度分組後,再轉換成圖形就是直截了當了。

    測驗

    附:Mahematica 代碼

    renderEvents[evts_List] := 
     Map[SortBy[-#duration &] /* renderVGroup]@
      ConnectedComponents@
       RelationGraph[{e1, e2} \[Function] 
         IntervalIntersection[e1["duration"], e2["duration"]] =!= 
          Interval[], evts]
    
    renderVGroup[evts_List] := Module[{hgs, n},
      hgs = Last@
        NestWhile[{Rest@First@#, 
           addToGroups[Last@#, First@First@#]} &, {evts, {}}, 
         First[#] != {} &];
      n = Length[hgs];
      MapIndexed[renderHGroup[#1, (First[#2] - 1)/n, 1/n] &]@hgs]
    
    addToGroups[gs_List, e_] := Module[{p},
      p = FirstPosition[gs,
        g_ /; 
         IntervalIntersection[IntervalUnion @@ (#duration & /@ g), 
           e["duration"]] === Interval[],
        Missing["NotFound"], {1}, Heads -> False];
      If[Head[p] === Missing,
       Append[gs, {e}],
       ReplacePart[gs, First[p] -> Append[gs[[First[p]]], e]]]]
    
    renderHGroup[evts_List, x_, w_] :=
     Map[{#["color"], 
        Rectangle[{x, Min[#["duration"]]}, {x + w, Max[#["duration"]]}], 
        Black, Text[
         Style[#["title"], 
          Medium], {x + w/2, (Max[#["duration"]] + Min[#["duration"]])/
           2}]} &, evts]
    
    testEvents[n_] := Module[{events},
      events = 
       Table[<|"title" -> ToString[i], 
         "duration" -> Interval[{#, # + #2}] &[RandomReal[{0, 21}], 
          RandomReal[{1, 3}]], "color" -> Hue[i/n, 0.4], 
         "order" -> i|>, {i, n}];
      Graphics[{EdgeForm[Thin], renderEvents[events]}, AspectRatio -> 1, 
       GridLines -> {None, Range[24]}, 
       GridLinesStyle -> {LightGray, Dashed}, Axes -> {None, True}]]

    回覆
    0
  • 伊谢尔伦

    伊谢尔伦2017-05-18 10:55:41

    @saigyouyou
    有可能是這樣的

    回覆
    0
  • 取消回覆