我试过了getjson之类的是可以的但是比较怀疑数据量大的话用什么比较好啊?记得见过有人是pandas+d3.js+flask用的,不过找不到了
回复内容:
无邀自答,只因为在我主页的信息流里面多看了你一眼。。。。这话题选得各种切中我的要害啊。
我是勤劳的搬运工。
Getting Your Python Data Onto Browser介绍了如何将你的python数据弄到浏览器里面。所以其实JSON才是python和js的中介,Flask框架只是帮你简单的建立一个JSON服务器而已,连RESTfull都谈不上,如果你只是用来可视化的话。当然你也可以实现增修改删的RESTful服务。同理,你也可以用Tornado,也许它的性能更好。
我假定是一个动态的服务,那么Panda的DataFrame可以帮你快速地处理数据,Playing with REALTIME data, Python and D3和Data visualization using D3.js and Flask都有介绍相关的细节。
功能实现后,你所关心的可能是性能问题。我觉得大多数还不太会需要这方面的担忧。最烦人的可能是开发和可维护性。当然如果关心性能,你也可以在你功能完善的情况下,考虑服务器的优化,引入cache服务,服务器平衡等等,我觉得这不是你关心的。
此外,强烈推荐数据可视化控,可以试试ipython notebook. 这篇Visualizing a NetworkX graph in the IPython notebook with d3.js可能会让你强烈地喜欢上ipython notebook.
新手的个人经验:比如现在我们要将一个数据从Javascript传输到Flask, 进行处理后再传回Javascript. 我们可以使用jQuery中的getJSON, 并将数据转化为String后进行传输.
Javascript + jQuery:
<span class="nx">mydata</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"msg"</span><span class="p">,</span> <span class="s2">"Hello Flask."</span><span class="p">};</span> <span class="c1">// 要传输的数据</span>
<span class="nx">$</span><span class="p">.</span><span class="nx">getJSON</span><span class="p">(</span><span class="s1">'/dataconvector'</span><span class="p">,</span> <span class="p">{</span> <span class="c1">// Flask中获取数据的function的url</span>
<span class="nx">mykey</span><span class="o">:</span> <span class="nx">JSON</span><span class="p">.</span><span class="nx">stringify</span><span class="p">(</span><span class="nx">mydata</span><span class="p">)</span> <span class="c1">// 定义一个keyword, 将数据stringify</span>
<span class="p">},</span> <span class="kd">function</span><span class="p">(</span><span class="nx">data</span><span class="p">)</span> <span class="p">{</span> <span class="c1">// 从Flask返回的数据</span>
<span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="nx">data</span><span class="p">.</span><span class="nx">result</span><span class="p">);</span>
<span class="nx">$</span><span class="p">(</span> <span class="s2">"#result"</span> <span class="p">).</span><span class="nx">text</span><span class="p">(</span><span class="nx">data</span><span class="p">.</span><span class="nx">result</span><span class="p">);</span>
<span class="p">}</span>
<span class="p">);</span>
websocket啊另外推荐神器 GitHub - brython-dev/brython: Brython (Browser Python) is an implementation of Python 3 running in the browser
bottle-websocket flask-socketio, 相当简单易用
https://flask-socketio.readthedocs.org/en/latest/ 入门上手的话推荐看这本:
Data Visualization with Python and JavaScript - O'Reilly Media 推荐一个Github上面的开源项目,Caravel(GitHub - airbnb/caravel: Caravel is a data exploration platform designed to be visual, intuitive, and interactive),我正在学习和研究它 在flask这个包里有jsonify这个方法,可以return这个方法的返回值,在js那边接受为json。
除此之外,还可以使用jinja过滤器,在html上将字典转化为js可以读取的格式。字符串就不必了。
参考我的博客
http://www.cnblogs.com/lewis617/p/5184621.html 用Flask搭建一个RESTful服务,以JSON作为数据接口,这样前台就能获取后台的数据。 tornado + websocket 也是一个选择,格式 json 比较方便。

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 Linux新版
SublimeText3 Linux最新版

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。