首頁 >後端開發 >Python教學 >值得看的Python的开源项目有哪些?

值得看的Python的开源项目有哪些?

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB原創
2016-06-06 16:22:271200瀏覽

好的开源项目对大家学习会有很大帮助,希望大家推荐下适合Python学习的好的开源项目,尽量本身不是太庞大,而且结构清晰

回复内容:

Pocoo 家出的都是精品,比如 Flask, Werkzeug, Jinja 2 , Pygments, Sphinx 。Flask 号称微框架,0.1的代码才700来行(其中大部分都是注释) 而且代码写得很规范,非常适合学习。

Django为了做到功能完备代码必然庞大而复杂不建议单纯的阅读。 flask; requests (Python HTTP Requests for Humans)
看看requests吧, github上排名很高。 Kenneth Reitz的作品值得一看。他就是requests的作者。
kennethreitz (Kenneth Reitz) · GitHub
Kenneth Reitz Tornado,不只是web/框架/server怎么实现,还有底层的异步/非阻塞/eventloop/epoll等等相关的概念,非常值得深入理解 先把标准库读一遍? Olivier Grisel在github上的repos
ogrisel (Olivier Grisel) · GitHub 我自己的感觉. 很多..
当你用某个第三方库的时候. 遇到bug并且能够确定你的代码逻辑上没问题之后. 你就会去看哪个第三方库的源码了... tornado, 代码很简洁, 从低层的IO到模板处理都有, 有兴趣参考: 阅读Tornado v 1.0.0笔记. odoo.com
开源erp 也是装机最多的erp

openstack.org
开源云os
azure aws joyent gce之外的用的云os多是这个 Reading Great Code

Reading Great Code

One of the core tenants behind the design of Python is creating readable code. The motivation behind this design is simple: The number one thing that Python programmers do is read code.

One of the secrets of becoming a great Python programmer is to read, understand, and comprehend excellent code.

Excellent code typically follows the guidelines outlined in Code Style, and does its best to express a clear and concise intent to the reader.

Included below is a list of recommended Python projects for reading. Each one of these projects is a paragon of Python coding.

  • Howdoi Howdoi is a code search tool, written in Python.
  • Flask Flask is a microframework for Python based on Werkzeug and Jinja2. It’s intended for getting started very quickly and was developed with best intentions in mind.
  • Diamond Diamond is a python daemon that collects metrics and publishes them to Graphite or other backends. It is capable of collecting cpu, memory, network, i/o, load and disk metrics. Additionally, it features an API for implementing custom collectors for gathering metrics from almost any source.
  • Werkzeug Werkzeug started as simple collection of various utilities for WSGI applications and has become one of the most advanced WSGI utility modules. It includes a powerful debugger, full-featured request and response objects, HTTP utilities to handle entity tags, cache control headers, HTTP dates, cookie handling, file uploads, a powerful URL routing system and a bunch of community-contributed addon modules.
  • Requests Requests is an Apache2 Licensed HTTP library, written in Python, for human beings.
  • Tablib Tablib is a format-agnostic tabular dataset library, written in Python.
陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn