比如求一个平面稳态导热问题,控制方程就是拉普拉斯方程:
(我才发现原来有[插入公式]这个功能)
按照最简单的毅种循环来写就是:
def laplace(u): nx, ny = u.shape for i in xrange(1,nx-1): for j in xrange(1, ny-1): u[i,j] = ((u[i+1, j] + u[i-1, j]) * dy2 + (u[i, j+1] + u[i, j-1]) * dx2) / (2*(dx2+dy2))
你们都不知道numexpr的么←_←
比numpy还黑的科技→_→
虽然能用的运算没多少吧但是对大矩阵的整体运算还是很快的←_←
最近正好在学numpy这个模块。题主可以看看这个教程,不是很全,但是科学计算方面还是有不少东西的:NumPy-快速处理数据
引用教程中的代码:
import time import math import numpy as np x = [i * 0.001 for i in xrange(1000000)] # 初始化数组0.000~999.999 start = time.clock() for i, t in enumerate(x): # 用循环计算正弦值 x[i] = math.sin(t) print "math.sin:", time.clock() - start x = [i * 0.001 for i in xrange(1000000)] x = np.array(x) # 初始化矩阵(这里是一维) start = time.clock() np.sin(x,x) # numpy的广播计算(代替循环) print "numpy.sin:", time.clock() - start # 输出 # math.sin: 1.15426932753 # numpy.sin: 0.0882399858083
用numpy, Cython, 或者 weave
Speed up Python
SciPy官网有关于如何提高Python Performance的教程
PerformancePython
用Pyrex/Cython或者weave基本上可以达到C++的速度。
Laplace的例子,500*500矩阵,100次循环。
numpy和pandas.DataFrame的矩阵运算可以广播,可以map。
第一个技巧是,用map和lambda表达式来生成你要的迭代参数,比如生成一个平方表:map(lambda x: x*x, xrange(100)),这是个黑科技,可以很快速的生成你需要的循环参数;
第二个技巧是,熟练使用矩阵掩膜(mask)来简化循环,比如把矩阵a中小于100的值都置零:a[a<100] = 0,比循环快很多;
第三个技巧是,多使用各种库,如numpy, scipy(signal库简直好顶赞),如果你做图像,opencv库是唯一的选择。
大致是这样,实际应用中更多的是前两个trick混合使用。
想要快,就内嵌C,Python是解释性语言,会比较慢。
有成熟的计算软件时用的C/C+++python的模式,核心算法和耗时最多的逻辑用C/C++,其他用python.

可以使用多種方法在Python中連接兩個列表:1.使用 操作符,簡單但在大列表中效率低;2.使用extend方法,效率高但會修改原列表;3.使用 =操作符,兼具效率和可讀性;4.使用itertools.chain函數,內存效率高但需額外導入;5.使用列表解析,優雅但可能過於復雜。選擇方法應根據代碼上下文和需求。

有多種方法可以合併Python列表:1.使用 操作符,簡單但對大列表不內存高效;2.使用extend方法,內存高效但會修改原列表;3.使用itertools.chain,適用於大數據集;4.使用*操作符,一行代碼合併小到中型列表;5.使用numpy.concatenate,適用於大數據集和性能要求高的場景;6.使用append方法,適用於小列表但效率低。選擇方法時需考慮列表大小和應用場景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python中,for循環用於遍歷可迭代對象,while循環用於條件滿足時重複執行操作。 1)for循環示例:遍歷列表並打印元素。 2)while循環示例:猜數字遊戲,直到猜對為止。掌握循環原理和優化技巧可提高代碼效率和可靠性。

要將列表連接成字符串,Python中使用join()方法是最佳選擇。 1)使用join()方法將列表元素連接成字符串,如''.join(my_list)。 2)對於包含數字的列表,先用map(str,numbers)轉換為字符串再連接。 3)可以使用生成器表達式進行複雜格式化,如','.join(f'({fruit})'forfruitinfruits)。 4)處理混合數據類型時,使用map(str,mixed_list)確保所有元素可轉換為字符串。 5)對於大型列表,使用''.join(large_li

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增強效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通過多種方法連接列表並管理重複元素:1)使用 運算符或extend()方法可以保留所有重複元素;2)轉換為集合再轉回列表可以去除所有重複元素,但會丟失原有順序;3)使用循環或列表推導式結合集合可以去除重複元素並保持原有順序。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

WebStorm Mac版
好用的JavaScript開發工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Dreamweaver CS6
視覺化網頁開發工具