搜尋
首頁後端開發Python教學Python有哪些黑魔法?

回复内容:

ctypes ,当年有个人靠这个省了好几个月的加班

------------------------劳动节补充-----------------------------

回答 @于酥酥

1. ipython + ctypes: 调试/测试Linux API的交互式运行环境

ipython是最好的REPL!(我喜欢Python,至少有30%的好感来自ipython)

REPL的好处不言自明,在开发和调试时能大大的提高效率。尤其是需要对API进行快速验证时。

我最早是用gdb来做一些REPL的事情,但毕竟操作复杂,交互式功能有限。而用ctypes,就爽快多了,ctypes可以直接人so中提取出函数,在Python层面稍加包装,就能直接使用,不用编译/连接,保持运行状态,结果出来直接用Python分析……简直是画面太美

真实场景:

我们的运营环境有数十万host,host上去除了编译环境,某一天,我们对某个系统调用的返回产生怀疑。于是,按照通常的作法,在开发机上写一个示例程序,编译,拷贝到运营机,运行,反复执行这一个过程。

那么有了ctypes,直接在python/ipython的REPL里调试就好了。还不容易留下可疑的可执行程序。

2. ctypes作为胶水

ctypes增强了python作为胶水语言的能力,从进程调用/统一协议级别的脱水直接深入到二进制级别的脱水。这样看来,C++对C的兼容就显得没那么重要了

真实场景:

某个执行框架,插件以so的形式提供,so提供固定的函数入口。重构时打算去除语言耦合,改用进程调用的方式调用插件(类似于cgi server,这样可以减少对插件编写的限制,插件本身也更容易测试,防止so崩溃造成框架整体崩溃)。但是很多插件的作者已离职,于是只需要框架额外增加从so里调用函数出来即可,做到平滑升级。

3. ctypes与系统编程

ctypes作为一种轻量并且内置的c语言“代理”,使得python极大地增强了系统编程的能力。

从此,系统编程的代码也可以变得更加优雅。

真实场景:

sdn/vpc方案需要对内核协议栈做较多的调整,从管理的层面上,网络配置由中央控制并下发。因此,host上存在一个daemon,一方面要接受zookeeper的配置变更通知,另一方面要把配置解析后通过netlink与内核通信。

这个daemon大概几乎没有人会用python去做。但是我看到iotop里用到ctypes对netlink接口的封装,惊为天人,并且python更加适合对配置解析与处理。我斗胆用python实现了这个daemon,调试起来如丝般顺滑,然后就减少了好几个月的加班。


回答我成电师兄 @韦易笑 大神

没有有生产环境用过cffi,以前在自己电脑上简单用过,感觉不如ctypes简单粗暴。当然我没去用的主要原因还是不想在部署的时候附带太多东西。 在Quora上看到的, 不算黑科技吧, 但感觉挺有意思的. turtle是内置库
Python有哪些黑魔法? Python有哪些黑魔法?

======================================================================
补充一个最近才看到的:

要对字典里面的键嵌套赋值, 对键不存在时候的解决方案:
<span class="kn">import</span> <span class="nn">collections</span>
<span class="n">tree</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">collections</span><span class="o">.</span><span class="n">defaultdict</span><span class="p">(</span><span class="n">tree</span><span class="p">)</span>
<span class="n">some_dict</span> <span class="o">=</span> <span class="n">tree</span><span class="p">()</span>
<span class="n">some_dict</span><span class="p">[</span><span class="s">"colors"</span><span class="p">][</span><span class="s">"favourite"</span><span class="p">]</span> <span class="o">=</span> <span class="s">"yellow"</span>
使用contextmanager来限制一个block的执行超时:
<span class="k">with</span> <span class="n">timeout</span><span class="p">(</span><span class="n">seconds</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
    <span class="n">balabala</span><span class="p">()</span>
pandas.. __slots__ 当年有个网站靠这个省了几个GB的内存。 可以看看这个,其实也不算黑魔法。
difflib,它是个official的module哦,用来比较串的相似度。
(difflib)[difflib – Compare sequences],
另外常用的functools和collections也都是Python吸引人的地方。
很多第三方的库窃以为不能算了。
另外doctest在进行单元测试的时候也是棒呆
25.2. doctest 说到python黑魔法,必然要提到python的第三方协程库gevent的底层实现——greenlet。
greenlet直接在内存层面,通过保存和替换Python进程的运行栈来实现不同协程的切换。
这个切换对于python解释器是透明的,如果python解释器对环境有感知的话,则每当协程切换的时候,它的感觉可能类似一个人前一秒还在在路上走路,下一秒突然自己又出现在了地铁上。
对于普通python用户而言,直接操作python的运行时栈,这就是在刀尖上跳舞有木有,这要求对内存的操作100%精确,任何错误都可能导致python进程崩溃!
那作者又是如何又是如何来保证正确性呢?除了要熟悉python、操作系统、编译器等等的底层机制,明确设计方案,还需要对不同的系统以及硬件环境做对应的适配工作。我们在使用python的时候,在不同的系统或者硬件下感觉都一样,那是因为python本身为我们屏蔽了底层细节,在做这种python底层hack的事情的时候,显然就没那么轻松了。
举个例子,由于CPU有很多种,例如i386、x86_64、arm等等,每种CPU的设计不尽相同,于是作者为每种CPU写了对应的汇编操作指令来完成栈的保存和替换,这些操作都是与操作系统和硬件高度绑定的。
虽然greenlet的实现这么bt,但就是有人做到了,加上gevent的封装,用起来比python自带协程好用太多。
我想任何对python比较熟悉的童鞋,在初次接触gevent的时候,都会好奇它是如何做到的,在进一步了解其底层greenlet实现机理之后,无不惊叹其鬼斧神工。
这种事情就是那种,别人不说,你可能永远不会想到的事情。 pip一下啥都有呀,比如微信接口 itchat
pip install itchat
Python有哪些黑魔法?
  1. PEP 0302 -- New Import Hooks
  • Flask 中的插件是怎么做的? 为何能用
    from flask.ext.sqlalchemy import SQLAlchemy
    
陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中?在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中?Apr 01, 2025 pm 11:15 PM

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

解釋Python中虛擬環境的目的。解釋Python中虛擬環境的目的。Mar 19, 2025 pm 02:27 PM

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),