字符串 -- 不可改变的序列
如同大多数高级编程语言一样,变长字符串是 Python 中的基本类型。Python 在“后台”分配内存以保存字符串(或其它值),程序员不必为此操心。Python 还有一些其它高级语言没有的字符串处理功能。
在 Python 中,字符串是“不可改变的序列”。尽管不能“按位置”修改字符串(如字节组),但程序可以引用字符串的元素或子序列,就象使用任何序列一样。Python 使用灵活的“分片”操作来引用子序列,字符片段的格式类似于电子表格中一定范围的行或列。以下交互式会话说明了字符串和字符片段的的用法:
字符串和分片
>>> s = "mary had a little lamb" >>> s[0] # index is zero-based 'm' >>> s[3] = 'x' # changing element in-place fails Traceback (innermost last): File "<stdin>", line 1, in ? TypeError: object doesn't support item assignment >>> s[11:18] # 'slice' a subsequence 'little ' >>> s[:4] # empty slice-begin assumes zero 'mary' >>> s[4] # index 4 is not included in slice [:4] ' ' >>> s[5:-5] # can use "from end" index with negatives 'had a little' >>> s[:5]+s[5:] # slice-begin & slice-end are complimentary 'mary had a little lamb'
另一个功能强大的字符串操作就是简单的 in 关键字。它提供了两个直观有效的构造:
in 关键字
>>> s = "mary had a little lamb" >>> for c in s[11:18]: print c, # print each char in slice ... l i t t l e >>> if 'x' in s: print 'got x' # test for char occurrence ... >>> if 'y' in s: print 'got y' # test for char occurrence ... got y
在 Python 中,有几种方法可以构成字符串文字。可以使用单引号或双引号,只要左引号和右引号匹配,常用的还有其它引号的变化形式。如果字符串包含换行符或嵌入引号,三重引号可以很方便地定义这样的字符串,如下例所示:
三重引号的使用
>>> s2 = """Mary had a little lamb ... its fleece was white as snow ... and everywhere that Mary went ... the lamb was sure to go""" >>> print s2 Mary had a little lamb its fleece was white as snow and everywhere that Mary went the lamb was sure to go
使用单引号或三重引号的字符串前面可以加一个字母 "r" 以表示 Python 不应该解释规则表达式特殊字符。例如:
使用 "r-strings"
>>> s3 = "this \n and \n that" >>> print s3 this and that >>> s4 = r "this \n and \n that" >>> print s4 this \n and \n that
在 "r-strings" 中,可能另外组成换码符的反斜杠被当作是常规反斜杠。在以后的规则表达式讨论中会进一步说明这个话题。
文件和字符串变量
我们谈到“文本处理”时,我们通常是指处理的内容。Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: .read()、.readline() 和 .readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。
.readline() 和 .readlines() 非常相似。它们都在类似于以下的结构中使用:
Python .readlines() 示例
fh = open( 'c:\\autoexec.bat') for line in fh.readlines(): print line
.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for ... in ... 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。
如果正在使用处理文件的标准模块,可以使用 cStringIO 模块将字符串转换成“虚拟文件”(如果需要生成模块的子类,可以使用 StringIO 模块,初学者未必要这样做)。例如:
cStringIO 模块
>>> import cStringIO >>> fh = cStringIO.StringIO() >>> fh.write( "mary had a little lamb") >>> fh.getvalue() 'mary had a little lamb' >>> fh.seek(5) >>> fh.write( 'ATE') >>> fh.getvalue() 'mary ATE a little lamb'
但是,请记住,cStringIO“虚拟文件”不是永久的,这一点与真正的文件不同。如果不保存它(如将它写入一个真正的文件,或者使用 shelve 模块或数据库),则程序结束时,它将消失。
标准模块:string
string 模块也许是 Python 1.5.* 标准发行版中最常用的模块。实际上,在 Python 1.6 或更高版本中,string 模块中的功能将作为内置字符串方法(在撰写本文时,详细信息尚未发布)。当然,任何执行文本处理任务的程序也许应该用以下这行开头:
开始使用 string 的方法
import string
一般经验法则告诉我们,如果 可以 使用 string 模块完成任务,那么那就是 正确 的方法。与 re(规则表达式)相比,string 函数通常更快速,大多数情况下他们更易于理解和维护。第三方 Python 模块,包括某些用 C 编写的快速模块,适用于专门的任务,但可移植性和熟悉性都建议只要可能就使用 string。如果您习惯于使用其它语言,也会有例外,但不如您想像的那样多。
string 模块包含了几种类型的事物,如函数、方法和类;它还包含了公共常量的字符串。例如:
string 用法例 1
>>> import string >>> string.whitespace '\011\012\013\014\015 ' >>> string.uppercase 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
虽然可以用手写出这些常量,string 版本或多或少确保了常量对于运行 Python 脚本的国家语言和平台将是正确的。
string 还包括了以常见方式(可以结合这些方式来构成几种罕见的转换)转换字符串的函数。例如:
string 用法例 2
>>> import string >>> s = "mary had a little lamb" >>> string.capwords(s) 'Mary Had A Little Lamb' >>> string.replace(s, 'little', 'ferocious') 'mary had a ferocious lamb'
还有许多没有在这里具体说明的其它转换;可以在 Python 手册中查找详细信息。
还可以使用 string 函数来报告字符串属性,如子串的长度或位置,例如:
string 用法例 3
>>> import string >>> s = "mary had a little lamb" >>> string.find(s, 'had')5>>> string.count(s, 'a')4
最后,string 提供了非常 Python 化的奇特事物。.split() 和 .join() 对提供了在字符串和字节组之间转换的迅捷方法,您会发现它们非常有用。用法很简单:
string 用法例 4
>>> import string>>> s = "mary had a little lamb" >>> L = string.split(s) >>> L [ 'mary', 'had', 'a', 'little', 'lamb'] >>> string.join(L, "-") 'mary-had-a-little-lamb'
当然,除了 .join() 之外,也许会利用列表来做其它事(如某些涉及我们熟悉的 for ... in ... 结构的事情)。
标准模块:re
re 模块废弃了在老的 Python 代码中使用的 regex 和 regsub 模块。虽然相对于 regex 仍然有几个有限的优点,不过这些优点微不足道,不值得在新代码中使用。过时的模块可能会从未来的 Python 发行版中删除,并且 1.6 版可能有一个改进的接口兼容的 re 模块。所以,规则表达式仍将使用 re 模块。
规则表达式很复杂。也许有人会撰写关于这个主题的书,但实际上,已经有许多人这样做了!本文尝试捕捉规则表达式的“完全形态”,让读者可以掌握它。
规则表达式是一种很简练方法,用于描述可能在文本中出现的模式。是否会出现某些字符?是否按特定顺序出现?子模式是否会重复一定次数?其它子模式是否会排除在匹配之外?从概念上说,似乎不能用自然语言了直观地描述模式。诀窍是使用规则表达式的简洁语法来编码这种描述。
当处理规则表达式时,将它作为它自己的编程问题来处理,即使只涉及一或两行代码;这些行有效地构成了一个小程序。
从最小处着手。从最基本上看,任何规则表达式都涉及匹配特定的“字符类”。最简单的字符类就是单个字符,它在模式中只是一个字。通常,您希望匹配一类字符。可以通过将类括在方括号内来表明这是一个类;在括号中,可以有一组字符或者用破折号指定的字符范围。还可以使用许多命名字符类来确定您的平台和国家语言。以下是一些示例:
字符类
>>> import re >>> s = "mary had a little lamb" >>> if re.search( "m", s): print "Match!" # char literal Match! >>> if re.search( "[@A-Z]", s): print "Match!" # char class ... # match either at-sign or capital letter ... >>> if re.search( "\d", s): print "Match!" # digits class ...
可以将字符类看作是规则表达式的“原子”,通常会将那些原子组合成“分子”。可以结合使用 分组和 循环 来完成此操作。由括号表示分组:括号中包含的任何子表达式都被看作是用于以后分组或循环的原子。循环则由以下几个运算符中的某一个来表示:"*" 表示“零或多”;"+" 表示“一或多”;"?" 表示“零或一”。例如,请看以下示例:
样本规则表达式
ABC([d-w]*\d\d?)+XYZ
对于要匹配这个表达式的字符串,它必须以 "ABC" 开头、以 "XYZ" 结尾 -- 但它的中间必须要有什么呢?中间子表达式是 ([d-w]*\d\d?),而且后面跟了“一或多”运算符。所以,字符串的中间必须包括一个(或者两个,或者一千个)与括号中的子表达式匹配的字符或字符串。字符串 "ABCXYZ" 不匹配,因为它的中间没有必要的字符。
不过这个内部子表达式是什么呢?它以 d-w 范围内的 零或多个 字母开头。一定要注意:零字母是有效匹配,虽然使用英语单词 "some"(一些)来描述它,可能会感到很别扭。接着,字符串必须 恰好有一个数字;然后有 零或一个 附加数字。(第一个数字字符类没有循环运算符,所以它只出现一次。第二个数字字符类有 "?" 运算符。)总而言之,这将翻译成“一个或两个数字”。以下是一些与规则表达式匹配的字符串:
匹配样本表达式的字符串
ABC1234567890XYZ ABCd12e1f37g3XYZ ABC1XYZ
还有一些表达式与规则表达式 不匹配(想一想,它们为什么不匹配):
不匹配样本表达式的字符串
ABC123456789dXYZ ABCdefghijklmnopqrstuvwXYZ ABcd12e1f37g3XYZ ABC12345%67890XYZ ABCD12E1F37G3XYZ
需要一些练习才能习惯创建和理解规则表达式。但是,一旦掌握了规则表达式,您就具有了强大的表达能力。也就是说,转而使用规则表达式解决问题通常会很容易,而这类问题实际上可以使用更简单(而且更快速)的工具,如 string,来解决。

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

WebStorm Mac版
好用的JavaScript開發工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

記事本++7.3.1
好用且免費的程式碼編輯器