本文实例讲述了python集合用法。分享给大家供大家参考。具体分析如下:
# sets are unordered collections of unique hashable elements # Python23 tested vegaseat 09mar2005 # Python v2.4 has sets built in import sets print "List the functions within module 'sets':" for funk in dir(sets): print funk # create an empty set set1 = set([]) # now load the set for k in range(10): set1.add(k) print "\nLoaded a set with 0 to 9:" print set1 set1.add(7) print "Tried to add another 7, but it was already there:" print set1 # make a list of fruits as you put them into a basket basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] print "\nThe original list of fruits:" print basket # create a set from the list, removes the duplicates fruits = sets.Set(basket) print "\nThe set is unique, but the order has changed:" print fruits # let's get rid of some duplicate words str1 = "Senator Strom Thurmond dressed as as Tarzan" print "\nOriginal string:" print str1 print "A list of the words in the string:" wrdList1 = str1.split() print wrdList1 # now create a set of unique words strSet = sets.Set(wrdList1) print "The set of the words in the string:" print strSet print "Convert set back to string (order has changed!):" print " ".join(strSet) print # comparing two sets, bear with me ... colorSet1 = sets.Set(['red','green','blue','black','orange','white']) colorSet2 = sets.Set(['black','maroon','grey','blue']) print "colorSet1 =", colorSet1 print "colorSet2 =", colorSet2 # same as (colorSet1 - colorSet2) colorSet3 = colorSet1.difference(colorSet2) print "\nThese are the colors in colorSet1 that are not in colorSet2:" print colorSet3 # same as (colorSet1 | colorSet2) colorSet4 = colorSet1.union(colorSet2) print "\nThese are the colors appearing in both sets:" print colorSet4 # same as (colorSet1 ^ colorSet2) colorSet5 = colorSet1.symmetric_difference(colorSet2) print "\nThese are the colors in colorSet1 or in colorSet2, but not both:" print colorSet5 # same as (colorSet1 & colorSet2) colorSet6 = colorSet1.intersection(colorSet2) print "\nThese are the colors common to colorSet1 and colorSet2:" print colorSet6
希望本文所述对大家的Python程序设计有所帮助。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

記事本++7.3.1
好用且免費的程式碼編輯器

Dreamweaver Mac版
視覺化網頁開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版