搜尋
首頁後端開發Python教學进一步探究Python的装饰器的运用

装饰器在 python 中用的相当广泛,如果你用过 python 的一些 web 框架,那么一定对其中的 “ route() 装饰器” 不陌生,今天咱们再看一个具体的案例。

咱们来模拟一个场景,需要你去抓去一个页面,然后这个页面有好多url也要分别去抓取,而进入这些子url后,还有数据要抓取。简单点,我们就按照三层来看,那我们的代码就是如下:
 

def func_top(url):
  data_dict= {}
 
  #在页面上获取到子url
  sub_urls = xxxx
 
  data_list = []
  for it in sub_urls:
    data_list.append(func_sub(it))
 
  data_dict['data'] = data_list
 
  return data_dict
 
def func_sub(url):
  data_dict= {}
 
  #在页面上获取到子url
  bottom_urls = xxxx
 
  data_list = []
  for it in bottom_urls:
    data_list.append(func_bottom(it))
 
  data_dict['data'] = data_list
 
  return data_dict
 
def func_bottom(url):
  #获取数据
  data = xxxx
  return data

func_top是上层页面的处理函数,func_sub是子页面的处理函数,func_bottom是最深层页面的处理函数,func_top会在取到子页面url后遍历调用func_sub,func_sub也是同样。
如果正常情况下,这样确实已经满足需求了,但是偏偏这个你要抓取的网站可能极不稳定,经常链接不上,导致数据拿不到。
于是这个时候你有两个选择:
1.遇到错误就停止,之后重新从断掉的位置开始重新跑
2.遇到错误继续,但是要在之后重新跑一遍,这个时候已经有的数据不希望再去网站拉一次,而只去拉没有取到的数据
对第一种方案基本无法实现,因为如果别人网站的url调整顺序,那么你记录的位置就无效了。那么只有第二种方案,说白了,就是要把已经拿到的数据cache下来,等需要的时候,直接从cache里面取。
OK,目标已经有了,怎么实现呢?
如果是在C++中的,这是个很麻烦的事情,而且写出来的代码必定丑陋无比,然而庆幸的是,我们用的是python,而python对函数有装饰器。
所以实现方案也就有了:
定义一个装饰器,如果之前取到数据,就直接取cache的数据;如果之前没有取到,那么就从网站拉取,并且存入cache中.
代码如下:
 

import os
import hashlib
 
def deco_args_recent_cache(category='dumps'):
  '''
  装饰器,返回最新cache的数据
  '''
  def deco_recent_cache(func):
    def func_wrapper(*args, **kargs):
      sig = _mk_cache_sig(*args, **kargs)
      data = _get_recent_cache(category, func.__name__, sig)
      if data is not None:
        return data
 
      data = func(*args, **kargs)
      if data is not None:
        _set_recent_cache(category, func.__name__, sig, data)
      return data
 
    return func_wrapper
 
  return deco_recent_cache
 
def _mk_cache_sig(*args, **kargs):
  '''
  通过传入参数,生成唯一标识
  '''
  src_data = repr(args) + repr(kargs)
  m = hashlib.md5(src_data)
  sig = m.hexdigest()
  return sig
 
def _get_recent_cache(category, func_name, sig):
  full_file_path = '%s/%s/%s' % (category, func_name, sig)
  if os.path.isfile(full_file_path):
    return eval(file(full_file_path,'r').read())
  else:
    return None
 
def _set_recent_cache(category, func_name, sig, data):
  full_dir_path = '%s/%s' % (category, func_name)
  if not os.path.isdir(full_dir_path):
    os.makedirs(full_dir_path)
 
  full_file_path = '%s/%s/%s' % (category, func_name, sig)
  f = file(full_file_path, 'w+')
  f.write(repr(data))
  f.close()

然后,我们只需要在每个func_top,func_sub,func_bottom都加上deco_args_recent_cache这个装饰器即可~~
搞定!这样做最大的好处在于,因为top,sub,bottom,每一层都会dump数据,所以比如某个sub层数据dump之后,是根本不会走到他所对应的bottom层的,减少了大量的开销!
OK,就这样~ 人生苦短,我用python!

注:

python3 已经原生支持了这种功能!链接如下:

http://docs.python.org/py3k/whatsnew/3.2.html#functools

推荐阅读:

https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能