搜尋
首頁科技週邊人工智慧LidaRF:研究用於街景神經輻射場的光達資料(CVPR\'24)

光真實感模擬在自動駕駛等應用中發揮關鍵作用,其中神經網路輻射場(NeRFs)的進步可能透過自動創建數位3D資產來實現更好的可擴展性。然而,由於街道上相機運動的高度共線性和在高速下的稀疏採樣,街景的重建品質受到影響。另一方面,該應用通常需要從偏離輸入視角的相機視角進行渲染,以準確模擬如變換車道等行為。 LidaRF提出了幾個見解,允許更好地利用光達數據來改善街景中NeRF的品質。首先,框架從雷射雷達資料中學習幾何場景表示,這些表示與基於隱式網格的解碼器相結合,從而提供了由顯示點雲提供的更強的幾何資訊。其次,提出了一種穩健的遮蔽感知深度監督訓練策略,允許透過累積使用密集雷射雷達點雲的強勢資訊來改善街景中的NeRF重建品質。第三,根據雷射雷達點的強度產生增強的訓練視角,以進一步改進在真實駕駛場景下的新視角合成中獲得的顯著改進。 這樣,透過框架從雷射雷達數據中學習到的更準確的幾何場景表示,可以一步改進方法並在真實駕駛場景下獲得更好的顯著改進。

LidaRF的貢獻主要體現在三個方面:

(i)混合雷射雷達編碼和網格特徵以增強場景表示。雖然光達已被用作自然的深度監控來源,但將雷射雷達納入NeRF輸入中,為幾何歸納提供了巨大的潛力,但實現起來並不簡單。為此,借用了基於網格的表示法,但將從點雲中學習的特徵整合到網格中,以繼承顯式點雲表示法的優勢。透過3D感知框架成功的啟動,利用3D稀疏療卷積網路作為有效且高效的結構,從雷射雷達點雲的局部和全局上下文中提取幾何特徵。

(ii)魯棒的遮蔽感知深度監督。與現有工作類似,這裡也使用光達作為深度監督的來源,但更深入。由於光達點的稀疏性限制了其有效性,尤其是在低紋理區域,透過跨鄰近幀集化光達點來產生更密集的深度圖。然而,這樣獲得的深度圖沒有考慮到遮擋,產生了錯誤的深度監督。因此,提出了一種健壯的深度監督方案,借用class學習的方式-從近場到遠場逐步監督深度,並在NeRF訓練過程中逐漸濾除錯誤的深度,從而更有效地從雷射雷達中學習深度。

(iii)基於光達的視野增強。此外,鑑於駕駛場景中的視圖稀疏性和覆蓋範圍有限,利用光達來密集化訓練視圖。也就是說,將累積的光達點投影到新的訓練視圖中;請注意,這些視圖可能與駕駛軌跡有一定的偏離。這些從雷射雷達投影的視圖被添加到訓練資料集中,它們並沒有考慮到遮蔽問題。然而,我們應用了前面提到的監督方案來解決遮蔽問題,從而提高了效能。雖然我們的方法也適用於一般場景,但在這項工作中更專注於街道場景的評估,並與現有技術相比,無論是定量還是定性,都取得了顯著的改進。

LidaRF在需要更大程度偏離輸入視圖的有趣應用中也顯示出優勢,在具有挑戰性的街道場景應用中顯著提高了NeRF的品質。

LidaRF整體框架一覽#​​

##LidaRF是一種用於輸入和輸出對應的密度和顏色的方法,它採用了UNet融合了哈夫編碼和激光雷達編碼。此外,透過光達投影產生強化訓練數據,使用提出的健壯深度監督方案訓練幾何預測。

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

1)雷射雷達編碼的混合表示法

雷射雷達點雲具有強大的幾何指導潛力,這對NeRF (神經渲染場)來說極具價值。然而,僅依賴光達特徵來進行場景表示,由於光達點的稀疏性(儘管有時間累積),會導致低解析度的渲染。此外,由於光達的視野有限,例如它不能捕獲超過一定高度的建築物表面,因此在這些區域中會出現空白渲染。相較之下,本文的框架融合了雷射雷達特徵和高解析度的空間網格特徵,以利用兩者的優勢,並共同學習以實現高品質和完整的場景渲染。

雷射雷達特徵提取。這裡詳細描述了每個雷射雷達點的幾何特徵提取過程,參考圖2,首先將整個序列的所有幀的雷射雷達點雲聚合起來,以建立更密集的點雲集合。然後將點雲體素化為體素網格,其中每個體素單元內的點的空間位置進行平均,為每個體素單元產生一個3維特徵。受到3D感知框架廣泛成功的啟發,在體素網格上使用3D稀疏UNet對場景幾何特徵進行編碼,這允許從場景幾何的全局上下文中學習。 3D稀疏UNet將體素網格及其3維特徵作為輸入,並輸出neural volumetric 特徵,每個被佔用的體素由n維特徵組成。

雷射雷達特徵查詢。對於沿著要渲染的射線上的每個樣本點x,如果在搜索半徑R內有至少K個附近的光達點,則查詢其光達特徵;否則,其光達特徵被設定為空(即全零)。具體來說,採用固定半徑最近鄰(FRNN)方法來搜尋與x相關的K個最近的雷射測距儀點索引集,記作。與[9]中在啟動訓練過程之前預先確定射線採樣點的方法不同,本文的方法在執行FRNN搜尋時是即時的,因為隨著NeRF訓練的收斂,來自region網路的樣本點分佈會動態地趨向於集中在表面。遵循Point-NeRF的方法,我們的方法利用一個多層感知機(MLP)F,將每個點的雷射雷達特徵映射到神經場景描述中。對於x的第i個鄰近點,F將光達特徵和相對位置作為輸入,並輸出神經場景描述為:

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

為了獲得取樣位置x處的最終雷射雷達編碼ϕ,使用標準的反距離權重法來聚合其K個鄰近點的神經場景描述

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

輻射解碼的特徵融合。將雷射雷達編碼ϕL與雜湊編碼ϕh進行拼接,並應用一個多層感知機Fα來預測每個樣本的密度α和密度嵌入h。最後,透過另一個多層感知機Fc,根據觀察方向d的球面諧波編碼SH和密度嵌入h來預測對應的顏色c。

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

2)魯棒深度監督

#除了特徵編碼外,還透過將光達點投影到影像平面上來從它們中獲取深度監督。然而,由於雷射雷達點的稀疏性,所得益處有限,不足以重建低紋理區域,如路面。在這裡,我們提出累積相鄰的雷射雷達幀以增加密度。儘管3D點能夠準確地捕捉場景結構,但在將它們投影到影像平面以進行深度監督時,需要考慮點之間的遮蔽。遮蔽是由於相機與雷射雷達及其相鄰幀之間的位移增加而產生的,從而產生虛假的深度監督,如圖3所示。由於即使累積後雷射雷達的稀疏性,處理這個問題也非常困難,使得諸如z緩衝之類的基本原理圖形技術無法應用。在這項工作中,提出了一種穩健的監督方案,以在訓練NeRF時自動過濾掉虛假的深度監督。

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

遮蔽感知的穩健監督方案。本文設計了一個class訓練策略,使得模型最初使用更近、更可靠的深度資料進行訓練,這些資料更不容易受到遮蔽的影響。隨著訓練的進行,模型逐漸開始融合更遠的深度資料。同時,模型也具備了丟棄與其預測相比異常遙遠的深度監督的能力。

回想一下,由於車載攝影機的向前移動,它產生的訓練影像是稀疏的,視野覆蓋有限,這給NeRF重建帶來了挑戰,尤其是當新視圖偏離車輛軌跡時。在這裡,我們提出利用光達來增強訓練資料。首先,我們透過將每個雷射雷達幀的點雲投影到其同步的攝影機上並為RGB值進行插值來為其上色。累積上色的點雲,並將其投影到一組合成增強的視圖上,產生如圖2所示的合成影像和深度圖。

實驗比較分析

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

LidaRF:研究用於街景神經輻射場的光達資料(CVPR\24)

######## ## #

以上是LidaRF:研究用於街景神經輻射場的光達資料(CVPR\'24)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
如何使用Star模式優化數據倉庫?如何使用Star模式優化數據倉庫?Apr 12, 2025 am 09:33 AM

Star模式是用於數據倉庫和商業智能的高效數據庫設計。它將數據組織到鏈接到周圍尺寸表的中心事實表中。這種類似恆星的結構簡化了複雜Q

構建多模式抹布系統的綜合指南構建多模式抹布系統的綜合指南Apr 12, 2025 am 09:29 AM

檢索增強生成系統(更名為抹布系統)已成為建立智能AI助手的事實上的標準

代理抹布系統如何改變技術?代理抹布系統如何改變技術?Apr 12, 2025 am 09:21 AM

介紹 人工智能進入了一個新時代。模型將基於預定義的規則輸出信息的日子已經一去不復返了。當今AI中的尖端方法圍繞抹布(檢索-Aigmente)

SQL自動生成查詢助手SQL自動生成查詢助手Apr 12, 2025 am 09:13 AM

您是否希望您可以簡單地與數據庫交談,用簡單的語言提出問題,並在不編寫複雜的SQL查詢或通過電子表格進行分類的情況下獲得即時答案?使用Langchain的SQL工具包,Groq A

閱讀AI索引2025:AI是您的朋友,敵人還是副駕駛?閱讀AI索引2025:AI是您的朋友,敵人還是副駕駛?Apr 11, 2025 pm 12:13 PM

斯坦福大學以人為本人工智能研究所發布的《2025年人工智能指數報告》對正在進行的人工智能革命進行了很好的概述。讓我們用四個簡單的概念來解讀它:認知(了解正在發生的事情)、欣賞(看到好處)、接納(面對挑戰)和責任(弄清我們的責任)。 認知:人工智能無處不在,並且發展迅速 我們需要敏銳地意識到人工智能發展和傳播的速度有多快。人工智能係統正在不斷改進,在數學和復雜思維測試中取得了優異的成績,而就在一年前,它們還在這些測試中慘敗。想像一下,人工智能解決複雜的編碼問題或研究生水平的科學問題——自2023年

開始使用Meta Llama 3.2 -Analytics Vidhya開始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

AV字節:Meta' llama 3.2,Google的雙子座1.5等AV字節:Meta' llama 3.2,Google的雙子座1.5等Apr 11, 2025 pm 12:01 PM

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

與機器交談的人類成本:聊天機器人真的可以在乎嗎?與機器交談的人類成本:聊天機器人真的可以在乎嗎?Apr 11, 2025 pm 12:00 PM

連接的舒適幻想:我們在與AI的關係中真的在蓬勃發展嗎? 這個問題挑戰了麻省理工學院媒體實驗室“用AI(AHA)”研討會的樂觀語氣。事件展示了加油

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。