通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。
在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。
將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這個過程可以直觀地展示了不同模型之間的內在聯繫,以及模型間的轉換可能。依照相似點,我粗糙(不嚴謹)地將模型分為以下6個大類,以方便發現基礎的共通性,逐一深入剖析!
連結主義模型是模擬人腦神經網路結構與功能的計算模型。其基本單元是神經元,每個神經元接收來自其他神經元的輸入,透過調整權重來改變輸入對神經元的影響。神經網路是一個黑盒子,透過多層的非線性隱藏層的作用,可以達到臨近的效果。
代表模型有DNN、SVM、Transformer、LSTM,某些情況下,深度神經網路的最後一層可以看作是一個邏輯迴歸模型,用於對輸入資料進行分類。而支援向量機也可以看作是特殊類型的神經網絡,其中只有兩層:輸入層和輸出層,SVM額外地透過核函數實現複雜的非線性轉化,達到和深度神經網路類似的效果。如下為經典DNN模型原理解析:
深度神經網路(DNN)是透過多層神經元組成,透過前向傳播過程,將輸入資料傳遞到每一層神經元,經過逐層計算得到輸出。每一層神經元都會接收上一層神經元的輸出作為輸入,並輸出到下一層神經元。 DNN的訓練過程是透過反向傳播演算法實現的。在訓練過程中,計算輸出層與真實標籤之間的誤差,並將誤差反向傳播到每一層神經元,根據梯度下降演算法更新神經元的權重和偏壓項。透過反覆迭代這個過程,不斷優化網路參數,最終使得網路的預測誤差最小化。
深度神經網路(DNN)的優點是具有強大的特徵學習能力。 DNN能夠自動學習資料的特徵,無需手動設計特徵。高度非線性性和強大的泛化能力。缺點是DNN需要大量的參數,這可能導致過度擬合問題。同時DNN的計算量很大,訓練時間長。以下是一個簡單的Python程式碼範例,使用Keras庫建立一個深度神經網路模型:
from keras.models import Sequentialfrom keras.layers import Densefrom keras.optimizers import Adamfrom keras.losses import BinaryCrossentropyimport numpy as np# 构建模型model = Sequential()model.add(Dense(64, activatinotallow='relu', input_shape=(10,))) # 输入层有10个特征model.add(Dense(64, activatinotallow='relu')) # 隐藏层有64个神经元model.add(Dense(1, activatinotallow='sigmoid')) # 输出层有1个神经元,使用sigmoid激活函数进行二分类任务# 编译模型model.compile(optimizer=Adam(lr=0.001), loss=BinaryCrossentropy(), metrics=['accuracy'])# 生成模拟数据集x_train = np.random.rand(1000, 10) # 1000个样本,每个样本有10个特征y_train = np.random.randint(2, size=1000) # 1000个标签,二分类任务# 训练模型model.fit(x_train, y_train, epochs=10, batch_size=32) # 训练10个轮次,每次使用32个样本进行训练
符號主義類別的模型是一種基於邏輯推理的智慧模擬方法,其認為人類是一個物理符號系統,電腦也是一個物理符號系統,因此,就可以用電腦的規則庫和推理引擎來模擬人的智能行為,即用計算機的符號操作來模擬人的認知過程(說穿了,就是將人類邏輯存入計算機,達成智能執行)。
其代表模型有專家系統、知識庫、知識圖譜,其原理是將資訊編碼成一組可識別的符號,透過顯式的規則來操作符號以產生運算結果。如下專家系統的簡單範例:
# 定义规则库rules = [{"name": "rule1", "condition": "sym1 == 'A' and sym2 == 'B'", "action": "result = 'C'"},{"name": "rule2", "condition": "sym1 == 'B' and sym2 == 'C'", "action": "result = 'D'"},{"name": "rule3", "condition": "sym1 == 'A' or sym2 == 'B'", "action": "result = 'E'"},]# 定义推理引擎def infer(rules, sym1, sym2):for rule in rules:if rule["condition"] == True:# 条件为真时执行动作return rule["action"]return None# 没有满足条件的规则时返回None# 测试专家系统print(infer(rules, 'A', 'B'))# 输出: Cprint(infer(rules, 'B', 'C'))# 输出: Dprint(infer(rules, 'A', 'C'))# 输出: Eprint(infer(rules, 'B', 'B'))# 输出: E
决策树模型是一种非参数的分类和回归方法,它利用树形图表示决策过程。更通俗来讲,树模型的数学描述就是“分段函数”。它利用信息论中的熵理论选择决策树的最佳划分属性,以构建出一棵具有最佳分类性能的决策树。
决策树模型的基本原理是递归地将数据集划分成若干个子数据集,直到每个子数据集都属于同一类别或者满足某个停止条件。在划分过程中,决策树模型采用信息增益、信息增益率、基尼指数等指标来评估划分的好坏,以选择最佳的划分属性。
决策树模型的代表模型有很多,其中最著名的有ID3、C4.5、CART等。ID3算法是决策树算法的鼻祖,它采用信息增益来选择最佳划分属性;C4.5算法是ID3算法的改进版,它采用信息增益率来选择最佳划分属性,同时采用剪枝策略来提高决策树的泛化能力;CART算法则是分类和回归树的简称,它采用基尼指数来选择最佳划分属性,并能够处理连续属性和有序属性。
以下是使用Python中的Scikit-learn库实现CART算法的代码示例:
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.tree import DecisionTreeClassifier, plot_tree# 加载数据集iris = load_iris()X = iris.datay = iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建决策树模型clf = DecisionTreeClassifier(criterinotallow='gini')clf.fit(X_train, y_train)# 预测测试集结果y_pred = clf.predict(X_test)# 可视化决策树plot_tree(clf)
概率模型是一种基于概率论的数学模型,用于描述随机现象或事件的分布、发生概率以及它们之间的概率关系。概率模型在各个领域都有广泛的应用,如统计学、经济学、机器学习等。
概率模型的原理基于概率论和统计学的基本原理。它使用概率分布来描述随机变量的分布情况,并使用概率规则来描述事件之间的条件关系。通过这些原理,概率模型可以对随机现象或事件进行定量分析和预测。
代表模型主要有:朴素贝叶斯分类器、贝叶斯网络、隐马尔可夫模型。其中,朴素贝叶斯分类器和逻辑回归都基于贝叶斯定理,它们都使用概率来表示分类的不确定性。
隐马尔可夫模型和贝叶斯网络都是基于概率的模型,可用于描述随机序列和随机变量之间的关系。
朴素贝叶斯分类器和贝叶斯网络都是基于概率的图模型,可用于描述随机变量之间的概率关系。
以下是使用Python中的Scikit-learn库实现朴素贝叶斯分类器的代码示例:
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.naive_bayes import GaussianNB# 加载数据集iris = load_iris()X = iris.datay = iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建朴素贝叶斯分类器模型clf = GaussianNB()clf.fit(X_train, y_train)# 预测测试集结果y_pred = clf.predict(X_test)
近邻类模型(本来想命名为距离类模型,但是距离类的定义就比较宽泛了)是一种非参数的分类和回归方法,它基于实例的学习不需要明确的训练和测试集的划分。它通过测量不同数据点之间的距离来决定数据的相似性。
以KNN算法为例,其核心思想是,如果一个样本在特征空间中的 k 个最接近的训练样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法基于实例的学习不需要明确的训练和测试集的划分,而是通过测量不同数据点之间的距离来决定数据的相似性。
代表模型有:k-近邻算法(k-Nearest Neighbors,KNN)、半径搜索(Radius Search)、K-means、权重KNN、多级分类KNN(Multi-level Classification KNN)、近似最近邻算法(Approximate Nearest Neighbor, ANN)
近邻模型基于相似的原理,即通过测量不同数据点之间的距离来决定数据的相似性。
除了最基础的KNN算法外,其他变种如权重KNN和多级分类KNN都在基础算法上进行了改进,以更好地适应不同的分类问题。
近似最近邻算法(ANN)是一种通过牺牲精度来换取时间和空间的方式,从大量样本中获取最近邻的方法。ANN算法通过降低存储空间和提高查找效率来处理大规模数据集。它通过“近似”的方法来减少搜索时间,这种方法允许在搜索过程中存在少量误差。
以下是使用Python中的Scikit-learn库实现KNN算法的代码示例:
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifier# 加载数据集iris = load_iris()X = iris.datay = iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建KNN分类器模型knn = KNeighborsClassifier(n_neighbors=3)knn.fit(X_train, y_train)# 预测测试集结果y_pred = knn.predict(X_test)
集成学习(Ensemble Learning)不仅仅是一类的模型,更是一种多模型融合的思想,通过将多个学习器的预测结果进行合并,以提高整体的预测精度和稳定性。在实际应用中,集成学习无疑是数据挖掘的神器!
集成学习的核心思想是通过集成多个基学习器来提高整体的预测性能。具体来说,通过将多个学习器的预测结果进行合并,可以减少单一学习器的过拟合和欠拟合问题,提高模型的泛化能力。同时,通过引入多样性(如不同的基学习器、不同的训练数据等),可以进一步提高模型的性能。常用的集成学习方法有:
集成学习代表模型有:随机森林、孤立森林、GBDT、Adaboost、Xgboost等。以下是使用Python中的Scikit-learn库实现随机森林算法的代码示例:
from sklearn.ensemble import RandomForestClassifierfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_split# 加载数据集iris = load_iris()X = iris.datay = iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建随机森林分类器模型clf = RandomForestClassifier(n_estimators=100, random_state=42)clf.fit(X_train, y_train)# 预测测试集结果y_pred = clf.predict(X_test)
综上,我们通过将相似原理的模型归纳为各种类别,以此逐个类别地探索其原理,可以更为系统全面地了解模型的原理及联系。希望对大家有所帮助!
以上是通透!機器學習各大模型原理的深度剖析!的詳細內容。更多資訊請關注PHP中文網其他相關文章!