MySQL优化MySQL查询
数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要的计算机应用之一。从大多数系统的应用实例来看,查询操作在各种数据库操作中所占据的比重最大,而查询操作所基于的SELECT语句在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性。 v7N|;)8k笔者在应用项目的实施中发现,许多程序员在利用一些前端数据库开发工具(如PowerBuilder、Delphi等)开发数据库应用程序时,只注重用户界面的华丽,并不重视查询语句的效率问题,导致所开发出来的应用系统效率低下,资源浪费严重。因此,如何设计高效合理的查询语句就显得非常重要。本文以应用实例为基础,结合数据库理论,介绍查询优化技术在现实系统中的运用。 "0L!rxzH
,; 4
分析问题 ?s@hd2 vr
bt !=1
许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往可以使程序性能提高数十倍。查询计划是用户所提交的SQL语句的集合,查询规划是经过优化处理之后所产生的语句集合。DBMS处理查询计划的过程是这样的:在做完查询语句的词法、语法检查之后,将语句提交给DBMS的查询优化器,优化器做完代数优化和存取路径的优化之后,由预编译模块对语句进行处理并生成查询规划,然后在合适的时间提交给系统处理执行,最后将执行结果返回给用户。在实际的数据库产品(如Oracle、Sybase等)的高版本中都是采用基于代价的优化方法,这种优化能根据从系统字典表所得到的信息来估计不同的查询规划的代价,然后选择一个较优的规划。虽然现在的数据库产品在查询优化方面已经做得越来越好,但由用户提交的SQL语句是系统优化的基础,很难设想一个原本糟糕的查询计划经过系统的优化之后会变得高效,因此用户所写语句的优劣至关重要。系统所做查询优化我们暂不讨论,下面重点说明改善用户查询计划的解决方案。 9M",;"Ss
4zPM?eyk
解决问题 o%%v}o aZ:
O.vW_XWc
下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。 ?^EQ4x&a J
z`?Bu$7
1.合理使用索引 =Qq@Y=+
n.+3iU9~-3
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下: (%R9l
@L2K:M.^L
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。 m%4_rm6!(
ubJ *$?@B
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。 u 3:Fj>V
n[{D dKzK
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。 j ] )t$
;/M; kreC
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。 Y[gXim_^
|SM\fWvs
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。 .y-}XL@FK
!&P^|u|b%
2.避免或简化排序 h5NI9Y|
Nw+[^O^
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素: _ jGcRM
M[gF6F
●索引中不包括一个或几个待排序的列; x}k\!;f
=[`$TuH-
●group by或order by子句中列的次序与索引的次序不一样; OGGd ^t:
{[ ]4l%%{
●排序的列来自不同的表。 ;-A25"5
- EH2C
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。 #K&[WL
!f-LWE
3.消除对大型表行数据的顺序存取 dC*\GwP
s8.PM\$'T
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。 3%X@2/u}j
}imA$D
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作: =es%63
7-F& ?!s.
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008 j+1Mra y,
)7n-3}
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句: $KI6]45?+4
\\XmmA
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001 ;dc/Gk)r
9hwK/" 4
UNION '/Zpsj}a
""]mbZel$
SELECT * FROM orders WHERE order_num=1008 VmaM~A
,N+oe )O
这样就能利用索引路径处理查询。 Lc$xw!IM
cx VIV_K,
S)cCN??K
4.避免相关子查询 5](e\"FQ*
#lv$I 7 0
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。 VpL&ux;
rw%oAZ
5.避免困难的正规表达式 ZH6CT=m(7
(ygZbw5sA
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _” !e,G{w7_C
=;vXJB`
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。 ID @ra
:iI 4'n
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。 |\(P)i ,
$1PP)j8 s
6.使用临时表加速查询 #'ETW!K;
o=;iZ;5
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如: 9[]wP(N
y\}}Y.61
SELECT cust.name,rcVBles.balance,……other columns `Mw3g? `
IW| mM.
FROM cust,rcvbles /UC!}B}
jBUwqlF
WHERE cust.customer_id = rcvlbes.customer_id 1+8lM#M
@=| 4+duKg
AND rcvblls.balance>0 5o?h|tEC
QYMS r
AND cust.postcode>“98000” FtxfGp
Y^AsD{L.
ORDER BY cust.name F["08+4x=e
bKIcb%
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序: ;Ul~H z\
Dq|i(CN
SELECT cust.name,rcvbles.balance,……other columns '-)_XVnQ0
>z!c=\eT=r
FROM cust,rcvbles 'q"Hl/
1 l
WHERE cust.customer_id = rcvlbes.customer_id B ULm
L 88 1J%
AND rcvblls.balance>0 H8FKiE
.$

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

EXPLAIN命令的關鍵指標包括type、key、rows和Extra。 1)type反映查詢的訪問類型,值越高效率越高,如const優於ALL。 2)key顯示使用的索引,NULL表示無索引。 3)rows預估掃描行數,影響查詢性能。 4)Extra提供額外信息,如Usingfilesort提示需要優化。

Usingtemporary在MySQL查詢中表示需要創建臨時表,常見於使用DISTINCT、GROUPBY或非索引列的ORDERBY。可以通過優化索引和重寫查詢避免其出現,提升查詢性能。具體來說,Usingtemporary出現在EXPLAIN輸出中時,意味著MySQL需要創建臨時表來處理查詢。這通常發生在以下情況:1)使用DISTINCT或GROUPBY時進行去重或分組;2)ORDERBY包含非索引列時進行排序;3)使用複雜的子查詢或聯接操作。優化方法包括:1)為ORDERBY和GROUPB

MySQL/InnoDB支持四種事務隔離級別:ReadUncommitted、ReadCommitted、RepeatableRead和Serializable。 1.ReadUncommitted允許讀取未提交數據,可能導致臟讀。 2.ReadCommitted避免臟讀,但可能發生不可重複讀。 3.RepeatableRead是默認級別,避免臟讀和不可重複讀,但可能發生幻讀。 4.Serializable避免所有並發問題,但降低並發性。選擇合適的隔離級別需平衡數據一致性和性能需求。

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL學習路徑包括基礎知識、核心概念、使用示例和優化技巧。 1)了解表、行、列、SQL查詢等基礎概念。 2)學習MySQL的定義、工作原理和優勢。 3)掌握基本CRUD操作和高級用法,如索引和存儲過程。 4)熟悉常見錯誤調試和性能優化建議,如合理使用索引和優化查詢。通過這些步驟,你將全面掌握MySQL的使用和優化。

MySQL在現實世界的應用包括基礎數據庫設計和復雜查詢優化。 1)基本用法:用於存儲和管理用戶數據,如插入、查詢、更新和刪除用戶信息。 2)高級用法:處理複雜業務邏輯,如電子商務平台的訂單和庫存管理。 3)性能優化:通過合理使用索引、分區表和查詢緩存來提升性能。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6
視覺化網頁開發工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。