提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。
下面一起來閱讀這項工作~
2. 摘要
3. 效果展示
與其他最先進的模型相比,DepthFM僅用一個函數評估就獲得了明顯更清晰的圖像。 Marigold的深度估計耗時是DepthFM的兩倍,但無法產生相同粒度的深度圖。
4. 主要貢獻
5. 具體原理是啥?
資料相關的流匹配:
DepthFM透過利用影像到深度對,回歸出影像分佈和深度分佈之間的直線向量場。這種方法在不犧牲性能的情況下促進了高效的幾步推理。從擴散先驗微調:
作者展示了成功將強大的圖像先驗從基礎圖像合成擴散模型(Stable Diffusion v2-1)轉移到流匹配模型,幾乎不依賴訓練數據,並且不需要真實世界的圖像。輔助表面法線損失:
考慮到DepthFM只在合成資料上進行訓練,大多數合成資料集提供了地面真實表面法線,並將表面法線損失作為輔助目標,以增強DepthFM深度估計的準確性。DepthFM демонстрирует значительную способность к обобщению, обучаясь только на 63 тысячах чисто синтетических образцов, и может выполнять обучение нулевого уровня на наборах данных внутри и снаружи. Оценка глубины выстрела. В таблице 1 качественно показано сравнение производительности DepthFM с соответствующими современными моделями. В то время как другие модели часто полагаются на большие наборы данных для обучения, DepthFM использует богатые знания, присущие базовой модели, основанной на диффузии. Этот метод не только экономит вычислительные ресурсы, но и подчеркивает адаптивность и эффективность обучения модели.
Сравнение оценки глубины Marigold на основе диффузии, эталонного теста Flow Matching (FM) и модели DepthFM. Каждый метод оценивается с использованием только одного члена ансамбля и с различным количеством оценок функций (NFE) на двух общих эталонных наборах данных. По сравнению с базовой линией FM, DepthFM объединяет нормальные потери и связь, зависящую от данных во время обучения.
Качественные результаты для моделей Marigold и DepthFM при различном количестве функциональных оценок. Стоит отметить, что Marigold не дает никаких значимых результатов посредством одношагового вывода, в то время как результаты DepthFM уже показывают реальную карту глубины.
Выполните глубокое завершение в Hypersim. Слева: придание глубины. Средняя: Глубина оценивается на основе заданной частичной глубины. Справа: Истинная глубина.
DepthFM, метод сопоставления потоков для монокулярной оценки глубины. Путем изучения прямого сопоставления между входным изображением и глубиной, а не шумоподавления нормального распределения в карте глубины, этот подход значительно более эффективен, чем текущие решения на основе диффузии, но при этом обеспечивает мелкозернистые карты глубины без общих артефактов дискриминационной парадигмы. . DepthFM использует предварительно обученную модель диффузии изображения в качестве априорной, эффективно передавая ее в модель сопоставления глубокого потока. Таким образом, DepthFM обучается только на синтетических данных, но при этом хорошо обобщает естественные изображения во время вывода. Кроме того, было показано, что нормальные потери на вспомогательной поверхности улучшают оценку глубины. Облегченный подход DepthFM является конкурентоспособным, быстрым и обеспечивает надежные достоверные оценки.
Читатели, которых интересуют дополнительные экспериментальные результаты и подробности статьи, могут прочитать оригинальную статью
以上是開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計!的詳細內容。更多資訊請關注PHP中文網其他相關文章!