搜尋
首頁科技週邊人工智慧學好線性代數,玩推薦系統
學好線性代數,玩推薦系統Mar 19, 2024 pm 02:52 PM
抖音人工智慧區塊鏈大語言模型matmat

作者| 汪昊

已審校| 重樓

學好線性代數,玩推薦系統

#說到21 世紀互聯網的技術,除了

Python / Rust / Go

等一系列新型程式語言的誕生,資訊檢索技術的蓬勃發展也是一大亮點。網路上第一個純科技商業模式就是以Google和百度代表的搜尋引擎技術。然而讓大家臆想不到的是,推薦系統誕生的年代也很久遠。早在1992 年,人類歷史上第一個推薦系統就以論文的形式發表出來了,而在這個時候,谷歌和百度還沒有誕生。 不像搜尋引擎那樣被人們認為是剛需,很快就誕生了許多獨角獸。以推薦系統為核心技術的科技公司要等到2010 年代今日頭條和抖音崛起後才會出現。毫無疑問,今日頭條和抖音成為了推薦系統最成功的代表性公司。如果說第一代資訊檢索技術搜尋引擎是美國人先發制人,那麼第二代資訊檢索技術推薦系統就被牢牢的控制在中國人手中。而我們現在遇到了第三代資訊檢索技術—— 基於大語言模型的資訊檢索。目前來看先發者是歐美國家,但目前中美正齊頭並進。 近年來,推薦系統領域的權威會議RecSys 頻頻將最佳論文獎頒給序列推薦Sequential Recommendation。這說明該領域目前越來越重視垂直應用。而有一個推薦系統的垂直應用是如此重要,但至今都沒有掀起滔天巨浪,這個領域就是基於場景的推薦(

Context-aware Recommendation),簡稱CARS。我們偶爾會見到有些CARS Workshop

###,但是這些######Workshop ######的論文每年不超過######10 ######篇,門可羅雀。 ############CARS ######可以用來幹嘛?首先######CARS ######已經被漢堡王等速食公司使用。它還可以在使用者駕駛汽車的時候,根據場景向使用者推薦音樂。另外,我們可以暢想一下,我們有沒有可能根據天氣狀況給用戶推薦出遊計畫?抑或是根據使用者的身體狀況推薦給使用者餐飲?其實,只要我們充分的發揮自己的想像力,總是能給######CARS #######找出不同的落地應用。 ######

然而問題來了,既然CARS 的用途這麼廣泛,為什麼這麼少的人發表論文?原因很簡單,因為CARS 幾乎沒有公開的資料集可以使用。目前最好用的 CARS 的公開資料集是來自斯洛維尼亞的LDOS-CoMoDa 資料集。除此之外,我們很難找到別的資料集合。 LDOS-CoMoDa 利用研究的形式提供了使用者觀影時的場景數據,使得廣大研究人員從事CARS 研究成為了可能。資料公開的時間點在2012 年到#2013 #年左右,但是目前知道這個資料集合的人很少。

言歸正傳,本文主要介紹MatMat / MovieMat 演算法和PowerMat 演算法。這些演算法都是用來解決 CARS 問題的利器。我們先來看看MatMat 是如何定義CARS 問題的:我們先重新定義使用者評分矩陣,我們把使用者評分矩陣的每一個評分值替換成方陣。方陣的對角線元素是原始的評分值,非對角線元素都是場景資訊。

學好線性代數,玩推薦系統

我們下面定義MatMat 演算法的損失函數,該函數修改了經典的矩陣分解損失函數,形式如下:

學好線性代數,玩推薦系統

其中U #V 都是矩陣。我們透過這種方式,改變了原始的矩陣分解中的向量點乘。將向量點乘變成了矩陣乘法。我們舉下面一個例子來看:

學好線性代數,玩推薦系統

我們在MovieLens Small Dataset #上做一下效能比較實驗,得到以下結果:

學好線性代數,玩推薦系統

可以看到,MatMat 演算法的效果優於經典的矩陣分解演算法。我們再來檢查一下推薦系統的公平性:

學好線性代數,玩推薦系統

可以看到,MatMat 在公平性指標上表現依然不遑多讓。 MatMat 的解題過程較為複雜,即使是發明演算法的作者本人,也沒有在論文中寫出推導過程。但是俗話說的好,學好線性代數#,走遍天下都不怕。相信聰明的讀者自己一定能推導出相關的公式,並實作這個演算法。 MatMat 演算法論文的原文網址可以在下面的連結找到:https://www.php.cn/link/9b8c60725a0193e78368bf8b84c37fb2 。這篇論文是國際學術會議IEEE ICISCAE 2021 最佳論文報告獎。

MatMat 演算法被應用在了基於場景的電影推薦領域,該演算法的電影實例被命名為MovieMat#。 MovieMat 的評分矩陣是按照如下方法定義的:

學好線性代數,玩推薦系統

作者接著做了一個比較實驗:

學好線性代數,玩推薦系統

LDOS-CoMoDa 資料集合上,MovieMat 取得了效能遠高於經典矩陣分解的效果。下面我們來觀察一下公平性的評估結果:

學好線性代數,玩推薦系統

#在公平性方面,經典矩陣分解取得了優於MovieMat 的結果。 MovieMat 的原始論文可以在下面的連結找到:https://www.php.cn/link/f4ec6380c50a68a7c35d109bec48aebf

我們有的時候會遇到這樣的問題。我們新到了一個地點,光有場景數據,而沒有用戶評分數據該怎麼辦?不要緊,Ratidar Technologies LLC (北京達評奇智網路科技有限責任公司) 發明了基於零樣本學習的CARS 演算法—— PowerMatPowerMat 的原始論文可以在下面的連結中找到:https://www.php.cn/link/1514f187930072575629709336826443

PowerMat 的發明人借用了MAP DotMat,定義瞭如下的MAP 函數:

學好線性代數,玩推薦系統

其中U 是使用者特徵向量、V 是物品特徵向量、R 是使用者評分值,而C 是場景變數。具體的,我們得到如下公式:

學好線性代數,玩推薦系統

利用隨機梯度下降對該問題進行求解,我們得到下述公式:

學好線性代數,玩推薦系統

#透過觀察,我們發現在這組公式裡沒有出現任何輸入資料相關的變量,因此PowerMat 是僅與場景相關的零樣本學習演算法。演算法可以應用在以下場景:遊客打算去某個地方旅遊,但從來沒有去過當地,因此只有天氣等場景數據,我們可以利用PowerMat 給遊客推薦打卡景點等等。

下面是PowerMat 和其他演算法的比較資料:

學好線性代數,玩推薦系統

透過這張圖,我們發現PowerMat MovieMat 旗鼓相當,分伯仲,而且效果都要優於經典的矩陣分解演算法。而下面這張圖顯示,即使是在公平性指標

方面,學好線性代數,玩推薦系統

PowerMat

依舊表現強勁: 透過對比實驗,我們發現PowerMat

是優秀的##CARS 演算法. 網路的資料工程師常說資料高於一切。並且在2010 年代左右互聯網有一股強勁的看好數據看衰演算法的風氣。 CARS 就是一個很好的例子。因為絕大多數人得不到相關數據,因此這個領域的發展一直受到了很大的限制。感謝斯洛維尼亞的研究人員公開了 LDOS-CoMoDa 資料集合,使得我們有機會發展這個領域。我們也希望有越來越多的人關注CARS,落地CARS

,為######CARS ## ####融資…######

作者簡介

汪昊,前Funplus 人工智慧實驗室負責人。曾在ThoughtWorks、豆瓣、百度、新浪等公司擔任科技與科技主管。在網路公司和金融科技、遊戲等公司任職13 年,對於人工智慧、電腦圖形學和區塊鏈等領域有著深刻的見解和豐富的經驗。在國際學術會議和期刊發表論文42 篇,獲得IEEE SMI 2008 最佳論文獎、 ICBDT 2020 / IEEE ICISCAE 2021 / AIBT 2023 / ICSIM 2024 最佳論文報告獎。

以上是學好線性代數,玩推薦系統的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器