bitsCN.com
1、对查询进行优化、应尽量避免全表扫描、首先应考虑在 where 及 order by 涉及的列上建立索引。
2、应尽量避免在 where 子句中对字段进行 null 值判断、否则将导致引擎放弃使用索引而进行全表扫描、如:
select id from t where num is null;
--可以在num上设置默认值0、确保表中num列没有null值、然后这样查询:
select id from t where num=0;
3、应尽量避免在 where 子句中使用!=或操作符、否则将引擎放弃使用索引而进行全表扫描。
4、应尽量避免在 where 子句中使用 or 来连接条件、否则将导致引擎放弃使用索引而进行全表扫描、如:
select id from t where num=10 or num=20
--可以这样查询:
select id from t where num=10
union all
select id from t where num=20;
5、in 和 not in 也要慎用、否则会导致全表扫描、如:
select id from t where num in(1,2,3);
对于连续的数值、能用 between 就不要用 in 了:
select id from t where num between 1 and 3;
6、下面的查询也将导致全表扫描:
select id from t where name like %abc%;
--若要提高效率、可以考虑全文检索。
7、如果在 where 子句中使用参数、也会导致全表扫描。因为SQL只有在运行时才会解析局部变量、但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而、如果在编译时建立访问计划、变量的值还是未知的、因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num;
--可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num;
8、应尽量避免在 where 子句中对字段进行表达式操作、这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100;
--应改为:
select id from t where num=100*2;
9、应尽量避免在where子句中对字段进行函数操作、这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=abc;
--name以abc开头的id
select id from t where datediff(day,createdate,2005-11-30)=0;
--‘2005-11-30’生成的id
--应改为:
select id from t where name like abc%;
select id from t where createdate>=2005-11-30 and createdate10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算、否则系统将可能无法正确使用索引。
11、在使用索引字段作为条件时、如果该索引是复合索引、那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引、否则该索引将不会被使用、并且应尽可能的让字段顺序与索引顺序相一致。
12、不要写一些没有意义的查询、如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0;
--这类代码不会返回任何结果集、但是会消耗系统资源的、应改成这样:
create table #t(...);
13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b);
--用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num);
14、并不是所有索引对查询都有效、SQL是根据表中数据来进行查询优化的、当索引列有大量数据重复时、SQL查询可能不会去利用索引、如一表中有字段sex、male、female几乎各一半、那么即使在sex上建了索引也对查询效率起不了作用。
15、索引并不是越多越好、索引固然可以提高相应的 select 的效率、但同时也降低了 insert 及 update 的效率、因为 insert 或 update 时有可能会重建索引、所以怎样建索引需要慎重考虑、视具体情况而定。一个表的索引数最好不要超过6个、若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16、应尽可能的避免更新 clustered 索引数据列、因为 clustered 索引数据列的顺序就是表记录的物理存储顺序、一旦该列值改变将导致整个表记录的顺序的调整、会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列、那么需要考虑是否应将该索引建为 clustered 索引。
17、尽量使用数字型字段、若只含数值信息的字段尽量不要设计为字符型、这会降低查询和连接的性能、并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符、而对于数字型而言只需要比较一次就够了。
18、尽可能的使用 varchar/nvarchar 代替 char/nchar 、因为首先变长字段存储空间小、可以节省存储空间、其次对于查询来说、在一个相对较小的字段内搜索效率显然要高些。
19、任何地方都不要使用 select * from t 、用具体的字段列表代替“*”、不要返回用不到的任何字段。
20、尽量使用表变量来代替临时表。如果表变量包含大量数据、请注意索引非常有限(只有主键索引)。
21、避免频繁创建和删除临时表、以减少系统表资源的消耗。
22、临时表并不是不可使用、适当地使用它们可以使某些例程更有效、例如、当需要重复引用大型表或常用表中的某个数据集时。但是、对于一次性事件、最好使用导出表。
23、在新建临时表时、如果一次性插入数据量很大、那么可以使用 select into 代替 create table、避免造成大量 log 、以提高速度;如果数据量不大、为了缓和系统表的资源、应先create table、然后insert。
24、如果使用到了临时表、在存储过程的最后务必将所有的临时表显式删除、先 truncate table 、然后 drop table 、这样可以避免系统表的较长时间锁定。
25、尽量避免使用游标、因为游标的效率较差、如果游标操作的数据超过1万行、那么就应该考虑改写。
26、使用基于游标的方法或临时表方法之前、应先寻找基于集的解决方案来解决问题、基于集的方法通常更有效。
27、与临时表一样、游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法、尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许、基于游标的方法和基于集的方法都可以尝试一下、看哪一种方法的效果更好。
28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON 、在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29、尽量避免大事务操作、提高系统并发能力。
30、尽量避免向客户端返回大数据量、若数据量过大、应该考虑相应需求是否合理。

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL是一個開源的關係型數據庫管理系統,適用於數據存儲、管理、查詢和安全。 1.它支持多種操作系統,廣泛應用於Web應用等領域。 2.通過客戶端-服務器架構和不同存儲引擎,MySQL高效處理數據。 3.基本用法包括創建數據庫和表,插入、查詢和更新數據。 4.高級用法涉及復雜查詢和存儲過程。 5.常見錯誤可通過EXPLAIN語句調試。 6.性能優化包括合理使用索引和優化查詢語句。

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

InnoDB的鎖機制包括共享鎖、排他鎖、意向鎖、記錄鎖、間隙鎖和下一個鍵鎖。 1.共享鎖允許事務讀取數據而不阻止其他事務讀取。 2.排他鎖阻止其他事務讀取和修改數據。 3.意向鎖優化鎖效率。 4.記錄鎖鎖定索引記錄。 5.間隙鎖鎖定索引記錄間隙。 6.下一個鍵鎖是記錄鎖和間隙鎖的組合,確保數據一致性。

MySQL查询性能不佳的原因主要包括没有使用索引、查询优化器选择错误的执行计划、表设计不合理、数据量过大和锁竞争。1.没有索引导致查询缓慢,添加索引后可显著提升性能。2.使用EXPLAIN命令可以分析查询计划,找出优化器错误。3.重构表结构和优化JOIN条件可改善表设计问题。4.数据量大时,采用分区和分表策略。5.高并发环境下,优化事务和锁策略可减少锁竞争。

在數據庫優化中,應根據查詢需求選擇索引策略:1.當查詢涉及多個列且條件順序固定時,使用複合索引;2.當查詢涉及多個列但條件順序不固定時,使用多個單列索引。複合索引適用於優化多列查詢,單列索引則適合單列查詢。

要優化MySQL慢查詢,需使用slowquerylog和performance_schema:1.啟用slowquerylog並設置閾值,記錄慢查詢;2.利用performance_schema分析查詢執行細節,找出性能瓶頸並優化。

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

WebStorm Mac版
好用的JavaScript開發工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Linux新版
SublimeText3 Linux最新版

記事本++7.3.1
好用且免費的程式碼編輯器