編輯 | XS
Nature 在 2023 年 11 月發表了兩項重要研究成果:蛋白質合成技術 Chroma 和晶體材料設計方法 GNoME。這兩項研究都採用了圖神經網路作為處理科學資料的工具。
實際上,圖神經網絡,特別是幾何圖神經網絡,一直是科學智慧(AI for Science)研究的重要工具。這是因為,科學領域中的粒子、分子、蛋白質、晶體等物理系統都可以被建模成一種特殊的資料結構──幾何圖。
與一般的拓樸圖不同,為了更好地描述物理系統,幾何圖加入了不可或缺的空間信息,需要滿足平移、旋轉和翻轉的物理對稱性。鑑於幾何圖神經網路對於物理系統建模的優越性,近年來各類方法層出不窮,論文數量持續成長。
近日,人大高瓴聯合騰訊 AI Lab、清華、史丹佛等機構發布綜述論文:《A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications》。此綜述在簡要介紹群論、對稱性等理論知識的基礎上,從資料結構、模型到眾多科學應用,對相關幾何圖神經網路文獻進行了系統性的梳理。
論文連結:https://arxiv.org/abs/2403.00485
GitHub連結:https:/ /github.com/RUC-GLAD/GGNN4Science
在這篇綜述中,作者研究了300 多篇參考文獻,歸納出3 種不同的幾何圖神經網路模型,介紹了面向粒子、分子、蛋白質等多種科學數據上共23 種不同任務的相關方法,收集了50 多個相關評測資料集。最後,綜述展望了未來的研究方向,包括幾何圖基礎模型、與大語言模型結合等。
以下是各章節簡單介紹。
幾何圖資料結構
幾何圖由鄰接矩陣、節點特徵、節點幾何資訊(例如座標)構成。在歐氏空間中,幾何圖通常表現出平移、旋轉和反射的物理對稱性,一般使用群來刻畫這些變換,包括歐式群、平移群、正交群、置換群等等。直觀上看,可以理解為置換、平移、旋轉、翻轉四種操作依一定順序的複合。
對於眾多 AI for Science 領域,幾何圖是一種有力且通用的表示方法,其可用於表示眾多物理系統,包括小分子、蛋白質、晶體、物理點雲等。
幾何圖神經網路模型
#根據實際問題中的求解目標對於對稱性的要求,本文將幾何圖神經網路分為三類:不變(invariant)模型、等變(equivariant)模型、以及受Transformer 架構啟發的Geometric Graph Transformer,其中等變模型又細分為標量化方法模型(Scalarization-Based Model)與基於球面調和的高階可操控模型(High-Degree Steerable Model)。按照上述規則,文章收集並歸類了近年來知名的幾何圖神經網路模型。
這裡我們透過各分支的代表性工作簡單介紹不變模型(SchNet[1])、標量化方法模型(EGNN[2])、高階可操控模型(TFN[3])的關聯與差異。可以發現三者皆是採用了訊息傳遞機制,只是身為等變模型的後兩者額外引入了一次幾何訊息傳遞。
不變模型主要利用節點本身的特徵(如原子種類、質量、帶電量等)與原子間不變的特徵(如距離、角度[4]、二面角[5])等進行訊息計算,隨後進行傳播。
而在此之上,標量化方法額外透過節點間座標差引入了幾何訊息,並將不變資訊作為幾何資訊的權重進行線性組合,實現了等變性的引入。
高階可操控模型則是使用了高階的球面調和(Spherical Harmonics)與Wigner-D 矩陣表徵系統的幾何信息,這類方法透過量子力學中的Clebsch–Gordan 係數操控不可約表示的階數,從而實現幾何訊息傳遞過程。
幾何圖神經網路透過這類設計保證的對稱性,準確率有大幅提升,並且在生成任務中也大放異彩。
下圖是幾何圖神經網路與傳統模型在QM9、PDBBind、SabDab 三個資料集上進行分子性質預測、蛋白質-配體對接和抗體設計(生成)三個任務中的結果,可以明顯看出幾何圖神經網路的優勢。
科學應用
在科學應用方面,綜述涵蓋了物理(粒子)、生物化學(小分子、蛋白質)以及其它如晶體等多個應用場景,任務定義與所需保證對稱性種類出發,分別介紹了各個任務中的常用數據集與該類任務中的經典模型設計思路。
上表展示了各個領域的常見任務與經典模型,其中,按照單一實例與多實例(如化學反應,需要多分子共同參與),文章單獨區分了小分子-小分子、小分子-蛋白質、蛋白質-蛋白質三個領域。
為了更好地方便領域內進行模型設計與實驗開展,文章依照單一實例與多實例統計了兩類任務的常用資料集與基準(benchmark),並記錄了不同資料集的樣本量與任務種類。
下表整理了常見的單一實例任務資料集。
下表整理了常見的多實例任務資料集。
未來展望
文章就幾個面向進行了初步的展望,希望能作拋磚引玉之用:
1. 幾何圖基礎模型
在各種任務和領域中採用統一的基礎模型的優越性在GPT系列模型的顯著進步中已經體現得淋漓盡致。如何在任務空間、資料空間、模型空間進行合理的設計,從而將這種想法引入到針對幾何圖神經網路的設計上仍是一個有趣的開放問題。
2. 模型訓練與現實世界實驗驗證的高效循環
科學資料的獲取是昂貴且耗時的,而僅在獨立資料集上評估的模型不能直接反應來自現實世界的回饋。如何類似於GNoME(整合了一個端到端的流水線,包括圖網絡訓練、密度泛函理論計算和用於材料發現和合成的自動實驗室)實現高效的模型-現實循環迭代的實驗範式的重要性將會與日俱增。
3. 與大型語言模型(LLMs)的融合
大型語言模型(LLMs)已被廣泛證明具有豐富的知識,涵蓋了各個領域。雖然已經有一些工作利用 LLMs 進行某些任務,例如分子屬性預測和藥物設計,但它們僅在基元或分子圖上操作。如何將它們與幾何圖神經網路有機組合,使其能夠處理 3D 結構資訊並在 3D 結構上執行預測或生成,仍然具有相當的挑戰性。
4. 等變性約束條件的放鬆
毫無疑問,等變性對增強資料效率和模型泛化能力至關重要,但值得注意的是,過強等變性約束有時可能過於限制模型,潛在地損害其性能。因此,如何使得所設計的模型在等變性與適應能力中取得平衡是一個非常有趣的問題。這方面的探索不僅可以豐富我們對模型行為的理解,還可以為開發更具穩健性和通用性的解決方案鋪平道路,使其具有更廣泛的適用性。
參考文獻
[1] Schütt K, Kindermans P J, Sauceda Felix H E, et al. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions[ J]. Advances in neural information processing systems, 2017, 30.
[2] Satorras VG, Hoogeboom E, Welling M. E(n)等變圖神經網路[C]//機器學習國際會議。 PMLR,2021:9323-9332。
[3] Thomas N、Smidt T、Kearnes S 等人。張量場網路:3d 點雲的旋轉和平移等變神經網路[J]. arXiv 預印本 arXiv:1802.08219, 2018.
[4] Gasteiger J, Groß J, Günnemann S. 分子圖的定向訊息傳遞[C]//學習表示國際會議。 2019.
[5] Gasteiger J, Becker F, Günnemann S. Gemnet: 分子的通用有向圖神經網路[J].神經資訊處理系統進展,2021, 34: 6790-6802。
[6] Merchant A、Batzner S、Schoenholz S S 等。擴展深度學習以促進材料發現[J].自然, 2023, 624(7990): 80-85.
以上是AI4Science的基石:幾何圖神經網絡,最完整綜述來了!人大高瓴聯合騰訊AI lab、清華、史丹佛等發布的詳細內容。更多資訊請關注PHP中文網其他相關文章!

經常使用“ AI-Ready勞動力”一詞,但是在供應鏈行業中確實意味著什麼? 供應鏈管理協會(ASCM)首席執行官安倍·埃什肯納齊(Abe Eshkenazi)表示,它表示能夠評論家的專業人員

分散的AI革命正在悄悄地獲得動力。 本週五在德克薩斯州奧斯汀,Bittensor最終遊戲峰會標誌著一個關鍵時刻,將分散的AI(DEAI)從理論轉變為實際應用。 與閃閃發光的廣告不同

企業AI面臨數據集成挑戰 企業AI的應用面臨一項重大挑戰:構建能夠通過持續學習業務數據來保持準確性和實用性的系統。 NeMo微服務通過創建Nvidia所描述的“數據飛輪”來解決這個問題,允許AI系統通過持續接觸企業信息和用戶互動來保持相關性。 這個新推出的工具包包含五個關鍵微服務: NeMo Customizer 處理大型語言模型的微調,具有更高的訓練吞吐量。 NeMo Evaluator 提供針對自定義基準的AI模型簡化評估。 NeMo Guardrails 實施安全控制,以保持合規性和適當的

AI:藝術與設計的未來畫卷 人工智能(AI)正以前所未有的方式改變藝術與設計領域,其影響已不僅限於業餘愛好者,更深刻地波及專業人士。 AI生成的藝術作品和設計方案正在迅速取代傳統的素材圖片和許多交易性設計活動中的設計師,例如廣告、社交媒體圖片生成和網頁設計。 然而,專業藝術家和設計師也發現AI的實用價值。他們將AI作為輔助工具,探索新的美學可能性,融合不同的風格,創造新穎的視覺效果。 AI幫助藝術家和設計師自動化重複性任務,提出不同的設計元素並提供創意輸入。 AI支持風格遷移,即將一種圖像的風格應用

Zoom最初以其視頻會議平台而聞名,它通過創新使用Agentic AI來引領工作場所革命。 最近與Zoom的CTO XD黃的對話揭示了該公司雄心勃勃的願景。 定義代理AI 黃d

AI會徹底改變教育嗎? 這個問題是促使教育者和利益相關者的認真反思。 AI融入教育既提出了機遇和挑戰。 正如科技Edvocate的馬修·林奇(Matthew Lynch)所指出的那樣

美國科學研究和技術發展或將面臨挑戰,這或許是由於預算削減導致的。據《自然》雜誌報導,2025年1月至3月期間,美國科學家申請海外工作的數量比2024年同期增加了32%。此前一項民意調查顯示,75%的受訪研究人員正在考慮前往歐洲和加拿大尋找工作。 過去幾個月,數百項NIH和NSF的撥款被終止,NIH今年的新撥款減少了約23億美元,下降幅度接近三分之一。洩露的預算提案顯示,特朗普政府正在考慮大幅削減科學機構的預算,削減幅度可能高達50%。 基礎研究領域的動盪也影響了美國的一大優勢:吸引海外人才。 35

Openai推出了強大的GPT-4.1系列:一個專為現實世界應用設計的三種高級語言模型家族。 這種巨大的飛躍提供了更快的響應時間,增強的理解和大幅降低了成本


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Atom編輯器mac版下載
最受歡迎的的開源編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),