1. 自訂日誌等級
除了預設的 DEBUG、INFO、WARNING、ERROR 和 CRITICAL 級別,您可以建立自訂級別。這對於區分不同嚴重程度的事件非常有用。
import logging # 创建自定义日志级别 CUSTOM_LEVEL = logging.INFO + 5 logging.addLevelName(CUSTOM_LEVEL, "CUSTOM") # 创建一个 Logger 并设置自定义日志级别 logger = logging.getLogger("my_logger") logger.setLevel(CUSTOM_LEVEL)
2. 使用不同處理器
處理器負責將日誌事件傳送到特定目標,例如檔案或控制台。您可以自訂處理器以滿足您的特定需求。
import logging # 创建一个 FileHandler 并设置日志文件名 file_handler = logging.FileHandler("my_log.txt") # 创建一个 StreamHandler 并输出到控制台 stream_handler = logging.StreamHandler() # 将处理器添加到 Logger logger = logging.getLogger("my_logger") logger.addHandler(file_handler) logger.addHandler(stream_handler)
3. 使用篩選器
過濾器可讓您根據特定條件過濾日誌事件。這對於僅記錄感興趣的事件非常有用。
import logging # 创建一个过滤器以过滤 INFO 级别以上的事件 info_filter = logging.Filter() info_filter.filter = lambda record: record.levelno >= logging.INFO # 将过滤器添加到 Logger logger = logging.getLogger("my_logger") logger.addFilter(info_filter)
4. 格式化日誌輸出
您可以自訂日誌事件的格式,以提供所需的資訊。
import logging # 创建一个 FORMatter 并设置格式字符串 formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") # 将 Formatter 添加到处理器 handler = logging.StreamHandler() handler.setFormatter(formatter) # 将处理器添加到 Logger logger = logging.getLogger("my_logger") logger.addHandler(handler)
5. 使用上下文處理器
上下文處理器可讓您在日誌記錄時添加額外的資訊。這對於追蹤請求或事務中的上下文很有用。
import logging from contextlib import contextmanager # 创建一个上下文处理器以添加请求 ID @contextmanager def request_id_context(request_id): previous_request_id = logging.currentframe().f_locals.get("request_id") try: logging.currentframe().f_locals["request_id"] = request_id yield finally: logging.currentframe().f_locals["request_id"] = previous_request_id # 使用上下文处理器 logger = logging.getLogger("my_logger") with request_id_context("1234"): logger.info("Received request")
6. 使用字典設定
您可以使用字典輕鬆地設定 Logging 模組。
import logging # 配置字典 logging_config = { "version": 1, "formatters": { "default": { "format": "%(asctime)s - %(levelname)s - %(message)s" } }, "handlers": { "file": { "class": "logging.FileHandler", "filename": "my_log.txt", "formatter": "default", }, "console": { "class": "logging.StreamHandler", "formatter": "default", } }, "loggers": { "my_logger": { "handlers": ["file", "console"], "level": "INFO", } } } # 从字典配置 Logging logging.config.dictConfig(logging_config)
7. 整合第三方套件
Logging 模組可以與第三方套件集成,例如 Sentry 或 Rollbar。這使您可以輕鬆地將日誌事件傳送到遠端服務。
import logging import sentry_sdk # 初始化 Sentry 并与 Logging 集成 sentry_sdk.init() logging.basicConfig(level=logging.INFO, handlers=[sentry_sdk.handler.SentryHandler()])
8. 使用多執行緒支援
Logging 模組支援多個線程應用程式。它使用線程本地存儲來確保每個線程都有自己的獨立日誌處理器。
import logging import threading # 创建线程安全的 Logger logger = logging.getLogger("my_logger") # 创建一个线程并向 Logger 记录 def thread_function(): logger.info("Executing in a separate thread") # 启动线程 thread = threading.Thread(target=thread_function) thread.start()
9. 記錄異常
Logging 模組可以自動記錄發生的例外狀況。
import logging # 创建一个 Logger logger = logging.getLogger("my_logger") # 记录一个异常 try: raise Exception("An error occurred") except Exception as e: logger.exception(e)
10. 使用擴充日誌記錄
python 3.8 引進了對擴充日誌記錄的支援。這允許您建立自訂日誌記錄函數和處理程序。
import logging # 创建一个自定义日志记录函数 def my_log_function(logger, level, msg, *args, **kwargs): # 您的自定义日志记录逻辑 # 添加自定义日志记录函数到 Logger logger = logging.getLogger("my_logger") logger.addHandler(logging.NullHandler()) logger.addFilter(logging.Filter()) logger.log = my_log_function
以上是掌握 Python Logging 模組的 10 個技巧的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3漢化版
中文版,非常好用

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具