NoSQL
在过去几年,关系型数据库一直是数据持久化的唯一选择,数据工作者考虑的也只是在这些传统数据库中做筛选,比如SQL Server、Oracle或者是MySQL。甚至是做一些默认的选择,比如使用.NET的一般会选择SQL Server;使用Java的可能会偏向Oracle,Ruby是MySQL,Python则是PostgreSQL或MySQL等等。
原因很简单:过去很长一段时间内,关系数据库的健壮性已经在多数应用程序中得到证实。我们可以使用这些传统数据库良好的控制并发操作、事务等等。然而如果传统的关系型数据库一直这么可靠,那么还有NoSQL什么事?NoSQL之所以生存并得到发展,是因为它做到了传统关系型数据库做不到的事!
关系型数据库中存在的问题
Impedance Mismatch
我们使用Python、Ruby、Java、.Net等语言编写应用程序,这些语言有一个共同的特性——面向对象。但是我们使用MySQL、PostgreSQL、Oracle以及SQL Server,这些数据库同样有一个共同的特性——关系型数据库。这里就牵扯到了“Impedance Mismatch”这个术语:存储结构是面向对象的,但是数据库却是关系的,所以在每次存储或者查询数据时,我们都需要做转换。类似Hibernate、Entity Framework这样的ORM框架确实可以简化这个过程,但是在对查询有高性能需求时,这些ORM框架就捉襟见肘了。
应用程序规模的变大
网络应用程序的规模日渐变大,我们需要储存更多的数据、服务更多的用户以及需求更多的计算能力。为了应对这种情形,我们需要不停的扩展。扩展分为两类:一种是纵向扩展,即购买更好的机器,更多的磁盘、更多的内存等等;另一种是横向扩展,即购买更多的机器组成集群。在巨大的规模下,纵向扩展发挥的作用并不是很大。首先单机器性能提升需要巨额的开销并且有着性能的上限,在Google和Facebook这种规模下,永远不可能使用一台机器支撑所有的负载。鉴于这种情况,我们需要新的数据库,因为关系数据库并不能很好的运行在集群上。不错你也可能会去搭建关系数据库集群,但是他们使用的是共享存储,这并不是我们想要的类型。于是就有了以Google、Facebook、Amazon这些试图处理更多传输所引领的NoSQL纪元。
NoSQL纪元
当下已经存在很多的NoSQL数据库,比如MongoDB、Redis、Riak、HBase、Cassandra等等。每一个都拥有以下几个特性中的一个:
- 不再使用SQL语言,比如MongoDB、Cassandra就有自己的查询语言
- 通常是开源项目
- 为集群运行而生
- 弱结构化——不会严格的限制数据结构类型
NoSQL数据库的类型
NoSQL可以大体上分为4个种类:Key-value、Document-Oriented、Column-Family Databases以及 Graph-Oriented Databases。下面就一览这些类型的特性:
一、 键值(Key-Value)数据库
键值数据库就像在传统语言中使用的哈希表。你可以通过key来添加、查询或者删除数据,鉴于使用主键访问,所以会获得不错的性能及扩展性。
产品:Riak、Redis、Memcached、Amazon’s Dynamo、Project Voldemort
有谁在使用:GitHub (Riak)、BestBuy (Riak)、Twitter (Redis和Memcached)、StackOverFlow (Redis)、 Instagram (Redis)、Youtube (Memcached)、Wikipedia(Memcached)
适用的场景
储存用户信息,比如会话、配置文件、参数、购物车等等。这些信息一般都和ID(键)挂钩,这种情景下键值数据库是个很好的选择。
不适用场景
1. 取代通过键查询,而是通过值来查询。Key-Value数据库中根本没有通过值查询的途径。
2. 需要储存数据之间的关系。在Key-Value数据库中不能通过两个或以上的键来关联数据。
3. 事务的支持。在Key-Value数据库中故障产生时不可以进行回滚。
二、 面向文档(Document-Oriented)数据库
面向文档数据库会将数据以文档的形式储存。每个文档都是自包含的数据单元,是一系列数据项的集合。每个数据项都有一个名称与对应的值,值既可以是简单的数据类型,如字符串、数字和日期等;也可以是复杂的类型,如有序列表和关联对象。数据存储的最小单位是文档,同一个表中存储的文档属性可以是不同的,数据可以使用XML、JSON或者JSONB等多种形式存储。
产品:MongoDB、CouchDB、RavenDB
有谁在使用:SAP (MongoDB)、Codecademy (MongoDB)、Foursquare (MongoDB)、NBC News (RavenDB)
适用的场景
1. 日志。企业环境下,每个应用程序都有不同的日志信息。Document-Oriented数据库并没有固定的模式,所以我们可以使用它储存不同的信息。
2. 分析。鉴于它的弱模式结构,不改变模式下就可以储存不同的度量方法及添加新的度量。
不适用场景
在不同的文档上添加事务。Document-Oriented数据库并不支持文档间的事务,如果对这方面有需求则不应该选用这个解决方案。
三、 列存储(Wide Column Store/Column-Family)数据库
列存储数据库将数据储存在列族(column family)中,一个列族存储经常被一起查询的相关数据。举个例子,如果我们有一个Person类,我们通常会一起查询他们的姓名和年龄而不是薪资。这种情况下,姓名和年龄就会被放入一个列族中,而薪资则在另一个列族中。
产品:Cassandra、HBase
有谁在使用:Ebay (Cassandra)、Instagram (Cassandra)、NASA (Cassandra)、Twitter (Cassandra and HBase)、Facebook (HBase)、Yahoo!(HBase)
适用的场景
1. 日志。因为我们可以将数据储存在不同的列中,每个应用程序可以将信息写入自己的列族中。
2. 博客平台。我们储存每个信息到不同的列族中。举个例子,标签可以储存在一个,类别可以在一个,而文章则在另一个。
不适用场景
1. 如果我们需要ACID事务。Vassandra就不支持事务。
2. 原型设计。如果我们分析Cassandra的数据结构,我们就会发现结构是基于我们期望的数据查询方式而定。在模型设计之初,我们根本不可能去预测它的查询方式,而一旦查询方式改变,我们就必须重新设计列族。
四、 图(Graph-Oriented)数据库
图数据库允许我们将数据以图的方式储存。实体会被作为顶点,而实体之间的关系则会被作为边。比如我们有三个实体,Steve Jobs、Apple和Next,则会有两个“Founded by”的边将Apple和Next连接到Steve Jobs。
产品:Neo4J、Infinite Graph、OrientDB
有谁在使用:Adobe (Neo4J)、Cisco (Neo4J)、T-Mobile (Neo4J)
适用的场景
1. 在一些关系性强的数据中
2. 推荐引擎。如果我们将数据以图的形式表现,那么将会非常有益于推荐的制定
不适用场景
不适合的数据模型。图数据库的适用范围很小,因为很少有操作涉及到整个图。
原文链接: NoSQL Databases, why we should use, and which one we should choose

MySQL數據庫升級的步驟包括:1.備份數據庫,2.停止當前MySQL服務,3.安裝新版本MySQL,4.啟動新版本MySQL服務,5.恢復數據庫。升級過程需注意兼容性問題,並可使用高級工具如PerconaToolkit進行測試和優化。

MySQL備份策略包括邏輯備份、物理備份、增量備份、基於復制的備份和雲備份。 1.邏輯備份使用mysqldump導出數據庫結構和數據,適合小型數據庫和版本遷移。 2.物理備份通過複製數據文件,速度快且全面,但需數據庫一致性。 3.增量備份利用二進制日誌記錄變化,適用於大型數據庫。 4.基於復制的備份通過從服務器備份,減少對生產系統的影響。 5.雲備份如AmazonRDS提供自動化解決方案,但成本和控制需考慮。選擇策略時應考慮數據庫大小、停機容忍度、恢復時間和恢復點目標。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中優化數據庫模式設計可通過以下步驟提升性能:1.索引優化:在常用查詢列上創建索引,平衡查詢和插入更新的開銷。 2.表結構優化:通過規範化或反規範化減少數據冗餘,提高訪問效率。 3.數據類型選擇:使用合適的數據類型,如INT替代VARCHAR,減少存儲空間。 4.分區和分錶:對於大數據量,使用分區和分錶分散數據,提升查詢和維護效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)

MySQL函數可用於數據處理和計算。 1.基本用法包括字符串處理、日期計算和數學運算。 2.高級用法涉及結合多個函數實現複雜操作。 3.性能優化需避免在WHERE子句中使用函數,並使用GROUPBY和臨時表。

MySQL批量插入数据的高效方法包括:1.使用INSERTINTO...VALUES语法,2.利用LOADDATAINFILE命令,3.使用事务处理,4.调整批量大小,5.禁用索引,6.使用INSERTIGNORE或INSERT...ONDUPLICATEKEYUPDATE,这些方法能显著提升数据库操作效率。

在MySQL中,添加字段使用ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column,刪除字段使用ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop。添加字段時,需指定位置以優化查詢性能和數據結構;刪除字段前需確認操作不可逆;使用在線DDL、備份數據、測試環境和低負載時間段修改表結構是性能優化和最佳實踐。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3 Linux新版
SublimeText3 Linux最新版

記事本++7.3.1
好用且免費的程式碼編輯器