首頁  >  文章  >  系統教程  >  Linux設備模型(5)_device和device driver

Linux設備模型(5)_device和device driver

WBOY
WBOY轉載
2024-02-11 08:21:11595瀏覽

1. 前言

#在Linux驅動程式開發中,device和device driver是基本概念。 Kernel的核心想法就是為裝置和其驅動程式分別定義device和device_driver兩個資料結構,本文將圍繞這兩個資料結構,介紹Linux裝置模型的核心邏輯,包括:

Linux设备模型(5)_device和device driver

  • # 設備及設備驅動在kernel的抽象化、使用與維護;
  • 設備及設備驅動的註冊、載入及初始化原理;
  • 設備模型在實際驅動開發過程中的使用方法。

要注意的是,在介紹device和device_driver的過程中,可能會涉及許多其他知識點,如Class、Bus、DMA、電源管理等等。這些知識點都非常複雜,任意一個都可以當作一個單獨的專題來闡述。因此,本文不會深入解析它們,而會在後續的文章中專門介紹。

2. struct device和struct device_driver

在閱讀Linux核心原始碼時,透過核心資料結構,即可理解某個模組60%以上的邏輯,裝置模型部分尤為明顯。

在include/linux/device.h中,Linux核心定義了裝置模型中最重要的兩個資料結構,struct device和struct device_driver。

  • struct device
 1: /* include/linux/device.h, line 660 */
 2: struct device {
 3:     struct device       *parent;
 4:  
 5:     struct device_private   *p;
 6:  
 7:     struct kobject kobj;
 8:     const char *init_name; /* initial name of the device */
 9:     const struct device_type *type;
 10:  
 11:    struct mutex        mutex; /* mutex to synchronize calls to
 12:                             * its driver.
 13:                             */
 14:  
 15:    struct bus_type *bus; /* type of bus device is on */
 16:    struct device_driver *driver; /* which driver has allocated this
 17:                                 device */
 18:    void *platform_data; /* Platform specific data, device
 19:                         core doesn't touch it */
 20:    struct dev_pm_info  power;
 21:    struct dev_pm_domain    *pm_domain;
 22:  
 23: #ifdef CONFIG_PINCTRL
 24:    struct dev_pin_info *pins;
 25: #endif
 26:  
 27: #ifdef CONFIG_NUMA
 28:    int numa_node; /* NUMA node this device is close to */
 29: #endif
 30:    u64     *dma_mask; /* dma mask (if dma'able device) */
 31:    u64     coherent_dma_mask;/* Like dma_mask, but for
 32:                             alloc_coherent mappings as
 33:                             not all hardware supports
 34:                             64 bit addresses for consistent
 35:                             allocations such descriptors. */
 36:  
 37:    struct device_dma_parameters *dma_parms;
 38:  
 39:    struct list_head    dma_pools; /* dma pools (if dma'ble) */
 40:  
 41:    struct dma_coherent_mem *dma_mem; /* internal for coherent mem
 42:                            override */
 43: #ifdef CONFIG_CMA
 44:    struct cma *cma_area; /* contiguous memory area for dma
 45:                            allocations */
 46: #endif
 47:    /* arch specific additions */
 48:    struct dev_archdata archdata;
 49:  
 50:    struct device_node  *of_node; /* associated device tree node */
 51:    struct acpi_dev_node    acpi_node; /* associated ACPI device node */
 52:  
 53:    dev_t           devt; /* dev_t, creates the sysfs "dev" */
 54:    u32         id; /* device instance */
 55:  
 56:    spinlock_t      devres_lock;
 57:    struct list_head    devres_head;
 58:  
 59:    struct klist_node   knode_class;
 60:    struct class *class;
 61:    const struct attribute_group **groups; /* optional groups */
 62:  
 63:    void (*release)(struct device *dev);
 64:    struct iommu_group  *iommu_group;
 65: };

#device結構很複雜(不過linux核心的開發人員素質是很高的,該介面的註解寫的非常詳細,有興趣的同學可以參考核心原始碼),這裡將會選一些對理解裝置模型非常關鍵的字段進行說明。

parent,該設備的父親設備,一般是該設備所從屬的bus、controller等設備。

p,一個用於struct device的私有資料結構指針,該指標中會保存子設備鍊錶、用於添加到bus/driver/prent等設備中的鍊錶頭等等,具體可查看原始程式碼。

kobj,該資料結構對應的struct kobject。

init_name,該裝置的名稱。

註1:在設備模型中,名稱是一個非常重要的變量,任何註冊到核心中的設備,都必須有一個合法的名稱,可以在初始化時給出,也可以由核心根據「bus name device ID」的方式創造。

type,struct device_type結構是新版核心新引入的結構,它和struct device關係,非常類似stuct kobj_type和struct kobject之間的關係,後續會再詳細說明。

bus,該device屬於哪個匯流排(後續會詳細描述)。

driver,該device對應的device driver。

platform_data,一個指針,用來保存特定的平台相關的資料。具體的driver模組,可以將一些私有的數據,暫存在這裡,需要使用的時候,再拿出來,因此設備模型並不關心該指針得實際意義。

power、pm_domain,電源管理相關的邏輯,後續會由電源管理專題來講解。

pins,”PINCTRL”功能,暫不描述。

numa_node,”NUMA」功能,暫不描述。

dma_mask~archdata,DMA相關的功能,暫不描述。

devt,dev_t是一個32位元的整數,它由兩個部分(Major和Minor)組成,在需要以裝置節點的形式(字元裝置和區塊裝置)向使用者空間提供介面的裝置中,當作設備號使用。在這裡,該變數主要用於在sys檔案系統中,為每個具有裝置號碼的device,建立/sys/dev/* 下的對應目錄,如下:

1|root@android:/storage/sdcard0 #ls /sys/dev/char/1:
1:1/ 1:11/ 1:13/ 1:14/ 1:2/ 1:3/ 1:5/ 1:7/ 1:8/ 1:9/
1|root@android:/storage/sdcard0 #ls /sys/dev/char/1:1
1:1/ 1:11/ 1:13/ 1:14/
1|root@android:/storage/sdcard0 # ls /sys/dev/char/1:1
# /sys/dev/char/1:1

class,該設備屬於哪個class。

groups,該裝置的預設attribute集合。將會在設備註冊時自動在sysfs中建立對應的檔案。

  • struct device_driver
 1: /* include/linux/device.h, line 213 */
 2: struct device_driver {  
 3:     const char *name;  
 4:     struct bus_type     *bus;
 5:  
 6:     struct module       *owner;
 7:     const char *mod_name; /* used for built-in modules */
 8:  
 9:     bool suppress_bind_attrs; /* disables bind/unbind via sysfs */
 10:  
 11:    const struct of_device_id   *of_match_table;
 12:    const struct acpi_device_id *acpi_match_table;
 13:  
 14:    int (*probe) (struct device *dev);
 15:    int (*remove) (struct device *dev);
 16:    void (*shutdown) (struct device *dev);
 17:    int (*suspend) (struct device *dev, pm_message_t state);
 18:    int (*resume) (struct device *dev);
 19:    const struct attribute_group **groups;
 20:  
 21:    const struct dev_pm_ops *pm;
 22:  
 23:    struct driver_private *p;
 24: };

device_driver就简单多了(在早期的内核版本中driver的数据结构为”struct driver”,不知道从哪个版本开始,就改成device_driver了):

name,该driver的名称。和device结构一样,该名称非常重要,后面会再详细说明。

bus,该driver所驱动设备的总线设备。为什么driver需要记录总线设备的指针呢?因为内核要保证在driver运行前,设备所依赖的总线能够正确初始化。

owner、mod_name,內核module相关的变量,暂不描述。

suppress_bind_attrs,是不在sysfs中启用bind和unbind attribute,如下:root@android:/storage/sdcard0 # ls /sys/bus/platform/drivers/switch-gpio/
bind uevent unbind
在kernel中,bind/unbind是从用户空间手动的为driver绑定/解绑定指定的设备的机制。这种机制是在bus.c中完成的,后面会详细解释。

probe、remove,这两个接口函数用于实现driver逻辑的开始和结束。Driver是一段软件code,因此会有开始和结束两个代码逻辑,就像PC程序,会有一个main函数,main函数的开始就是开始,return的地方就是结束。而内核driver却有其特殊性:在设备模型的结构下,只有driver和device同时存在时,才需要开始执行driver的代码逻辑。这也是probe和remove两个接口名称的由来:检测到了设备和移除了设备(就是为热拔插起的!)。

shutdown、suspend、resume、pm,电源管理相关的内容,会在电源管理专题中详细说明。

groups,和struct device结构中的同名变量类似,driver也可以定义一些默认attribute,这样在将driver注册到内核中时,内核设备模型部分的代码(driver/base/driver.c)会自动将这些attribute添加到sysfs中。

p,私有数据的指针,具体的driver代码可以把任何需要的内容放在这里,反正设备模型代码不关心。

3. 设备模型框架下驱动开发的基本步骤

在设备模型框架下,设备驱动的开发是一件很简单的事情,主要包括2个步骤:

步骤1:分配一个struct device类型的变量,填充必要的信息后,把它注册到内核中。

步骤2:分配一个struct device_driver类型的变量,填充必要的信息后,把它注册到内核中。

这两步完成后,内核会在合适的时机(后面会讲),调用struct device_driver变量中的probe、remove、suspend、resume等回调函数,从而触发或者终结设备驱动的执行。而所有的驱动程序逻辑,都会由这些回调函数实现,此时,驱动开发者眼中便不再有“设备模型”,转而只关心驱动本身的实现。

以上两个步骤的补充说明:

\1. 一般情况下,Linux驱动开发很少直接使用device和device_driver,因为内核在它们之上又封装了一层,如soc device、platform device等等,而这些层次提供的接口更为简单、易用(也正是因为这个原因,本文并不会过多涉及device、device_driver等模块的实现细节)。

\2. 内核提供很多struct device结构的操作接口(具体可以参考include/linux/device.h和drivers/base/core.c的代码),主要包括初始化(device_initialize)、注册到内核(device_register)、分配存储空间+初始化+注册到内核(device_create)等等,可以根据需要使用。

\3. device和device_driver必须具备相同的名称,内核才能完成匹配操作,进而调用device_driver中的相应接口。这里的同名,作用范围是同一个bus下的所有device和device_driver。

\4. device和device_driver必须挂载在一个bus之下,该bus可以是实际存在的,也可以是虚拟的。

\5. driver开发者可以在struct device变量中,保存描述设备特征的信息,如寻址空间、依赖的GPIOs等,因为device指针会在执行probe等接口时传入,这时driver就可以根据这些信息,执行相应的逻辑操作了。

4. 设备驱动probe的时机

所谓的”probe”,是指在Linux内核中,如果存在相同名称的device和device_driver(注:还存在其它方式,我们先不关注了),内核就会执行device_driver中的probe回调函数,而该函数就是所有driver的入口,可以执行诸如硬件设备初始化、字符设备注册、设备文件操作ops注册等动作(”remove”是它的反操作,发生在device或者device_driver任何一方从内核注销时,其原理类似,就不再单独说明了)。

设备驱动prove的时机有如下几种(分为自动触发和手动触发):

  • 将struct device类型的变量注册到内核中时自动触发(device_register,device_add,device_create_vargs,device_create)
  • 将struct device_driver类型的变量注册到内核中时自动触发(driver_register)
  • 手动查找同一bus下的所有device_driver,如果有和指定device同名的driver,执行probe操作(device_attach)
  • 手动查找同一bus下的所有device,如果有和指定driver同名的device,执行probe操作(driver_attach)
  • 自行调用driver的probe接口,并在该接口中将该driver绑定到某个device结构中—-即设置dev->driver(device_bind_driver)

注2:probe动作实际是由bus模块(会在下一篇文章讲解)实现的,这不难理解:device和device_driver都是挂载在bus这根线上,因此只有bus最清楚应该为哪些device、哪些driver配对。

注3:每个bus都有一个drivers_autoprobe变量,用于控制是否在device或者driver注册时,自动probe。该变量默认为1(即自动probe),bus模块将它开放到sysfs中了,因而可在用户空间修改,进而控制probe行为。

5. 其它杂项

5.1 device_attribute和driver_attribute

在”Linux设备模型(4)_sysfs”中,我们有讲到,大多数时候,attribute文件的读写数据流为:vfs—->sysfs—->kobject—->attibute—->kobj_type—->sysfs_ops—->xxx_attribute,其中kobj_type、sysfs_ops和xxx_attribute都是由包含kobject的上层数据结构实现。

Linux内核中关于该内容的例证到处都是,device也不无例外的提供了这种例子,如下:

 1: /* driver/base/core.c, line 118 */
 2: static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 3: char *buf) 
 4: {   
 5:     struct device_attribute *dev_attr = to_dev_attr(attr);
 6:     struct device *dev = kobj_to_dev(kobj);
 7:     ssize_t ret = -EIO;
 8: 
 9:     if (dev_attr->show)
 10:        ret = dev_attr->show(dev, dev_attr, buf);
 11:        if (ret >= (ssize_t)PAGE_SIZE) {
 12:            print_symbol("dev_attr_show: %s returned bad count\n",
 13:                        (unsigned long)dev_attr->show);
 14:    }
 15:    return ret;
 16: }
 17:  
 18: static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 19: const char *buf, size_t count)
 20: {
 21:    struct device_attribute *dev_attr = to_dev_attr(attr);
 22:    struct device *dev = kobj_to_dev(kobj);
 23:    ssize_t ret = -EIO;
 24: 
 25:    if (dev_attr->store)
 26:        ret = dev_attr->store(dev, dev_attr, buf, count);
 27:    return ret;
 28: }
 29:  
 30: static const struct sysfs_ops dev_sysfs_ops = {
 31:    .show   = dev_attr_show,
 32:    .store  = dev_attr_store,
 33: };
 34:  
 35: /* driver/base/core.c, line 243 */
 36: static struct kobj_type device_ktype = {
 37:    .release    = device_release,
 38:    .sysfs_ops  = &dev_sysfs_ops,
 39:    .namespace = device_namespace,
 40: };
 41:  
 42: /* include/linux/device.h, line 478 */
 43: /* interface for exporting device attributes */
 44: struct device_attribute {
 45:    struct attribute    attr;
 46:    ssize_t (*show)(struct device *dev, struct device_attribute *attr,
 47:                    char *buf);
 48:    ssize_t (*store)(struct device *dev, struct device_attribute *attr,
 49:                    const char *buf, size_t count);
 50: };

至于driver的attribute,则要简单的多,其数据流为:vfs—->sysfs—->kobject—->attribute—->driver_attribute,如下:

 1: /* include/linux/device.h, line 247 */
 2: /* sysfs interface for exporting driver attributes */
 3:  
 4: struct driver_attribute {
 5:     struct attribute attr;
 6:     ssize_t (*show)(struct device_driver *driver, char *buf);
 7:     ssize_t (*store)(struct device_driver *driver, const char *buf,
 8:                     size_t count);
 9: };
 10:  
 11: #define DRIVER_ATTR(_name, _mode, _show, _store)    \
 12: struct driver_attribute driver_attr_##_name =       \
 13:    __ATTR(_name, _mode, _show, _store)

5.2 device_type

device_type是内嵌在struct device结构中的一个数据结构,用于指明设备的类型,并提供一些额外的辅助功能。它的的形式如下:

 1: /* include/linux/device.h, line 467 */
 2: struct device_type {
 3:     const char *name;
 4:     const struct attribute_group **groups;
 5:     int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
 6:     char *(*devnode)(struct device *dev, umode_t *mode,
 7:                     kuid_t *uid, kgid_t *gid);
 8:     void (*release)(struct device *dev);
 9:  
 10:    const struct dev_pm_ops *pm;
 11: };

device_type的功能包括:

  • name表示该类型的名称,当该类型的设备添加到内核时,内核会发出”DEVTYPE=‘name’”类型的uevent,告知用户空间某个类型的设备available了
  • groups,该类型设备的公共attribute集合。设备注册时,会同时注册这些attribute。这就是面向对象中“继承”的概念
  • uevent,同理,所有相同类型的设备,会有一些共有的uevent需要发送,由该接口实现
  • devnode,devtmpfs有关的内容,暂不说明
  • release,如果device结构没有提供release接口,就要查询它所属的type是否提供。用于释放device变量所占的空间

5.3 root device

在sysfs中有这样一个目录:/sys/devices,系统中所有的设备,都归集在该目录下。有些设备,是通过device_register注册到Kernel并体现在/sys/devices/xxx/下。但有时候我们仅仅需要在/sys/devices/下注册一个目录,该目录不代表任何的实体设备,这时可以使用下面的接口:

 1: /* include/linux/device.h, line 859 */
 2: /*
 3:  * Root device objects for grouping under /sys/devices
 4:  */
 5: extern struct device *__root_device_register(const char *name,
 6: struct module *owner);
 7:  
 8: /*
 9:  * This is a macro to avoid include problems with THIS_MODULE,
 10:  * just as per what is done for device_schedule_callback() above.
 11:  */
 12: #define root_device_register(name) \
 13: __root_device_register(name, THIS_MODULE)
 14:  
 15: extern void root_device_unregister(struct device *root);

该接口会调用device_register函数,向内核中注册一个设备,但是(你也想到了),没必要注册与之对应的driver(顺便提一下,内核中有很多不需要driver的设备,这是之一)。

以上是Linux設備模型(5)_device和device driver的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:lxlinux.net。如有侵權,請聯絡admin@php.cn刪除