#以資料為導向的人工智慧可以有助於減少生成式AI系統中的幻覺和偏見,從而提高其輸出品質。
譯自The Paradigm Shift from Model-Centric to Data-Centric AI,作者 Rahul Pradhan 擁有16年以上的經驗,目前擔任Couchbase的產品和策略副總裁。
隨著變壓器神經網路和生成對抗網路(GAN)人工智慧(AI)的進步,科技領域正在經歷一次重大變革。這些技術不僅具有巨大的潛力,還能解鎖創新和規模化創造力。它們能夠提供更精確、高效的解決方案,並為各行各業帶來新的商機和發展機會。變壓器神經網路和GAN的結合,使得AI系統能夠更好地理解和產生人類語言、影像和聲音,從而推動了自然語言處理、電腦視覺和語音辨識等領域的發展。隨著這些技術的日益成熟,我們可以期待更多創新的應用和突破的出現,為人類社會帶來更多
隨著AI的發展,數據變得至關重要。數據是推動機器學習專案的生命線,將概念轉化為實用見解。然而,在AI專案中有效利用數據充滿挑戰,這阻礙了其採用和實現轉型價值。
為了增強AI的發展,我們目前正在經歷一個範式的轉變,即從以模型為中心轉向以數據為中心的AI轉型。這種轉變的目的是減少生成對抗網路系統中出現的幻覺和偏見。透過專注於以數據為中心的AI,並將模型更加貼近數據,我們能夠改善AI模型的輸出,並幫助企業充分發掘其潛力。這種轉變將為AI的發展帶來重要的動力。
以模型為中心的AI方法
傳統的以模型為中心的AI方法是機器學習發展的主要方式。它的核心思想是透過不斷迭代改進模型的性能,以產生最佳的模型來處理給定的資料集。研究人員和工程師花費大量時間微調模型的參數、層數和其他架構元素。然而,由於過去建構和微調模型是非常複雜且資源密集的過程,需要深厚的專業知識才能產生有意義的結果,因此數據往往被視為次要的因素。然而,近年來,隨著機器學習技術的進步和運算能力的增強,數據的重要性逐漸受到重視。現代AI方法更重視資料的品質和多樣性,透過更大規模的資料集和更強大的運算能力來訓練模型,從而提升模型的效能和泛化能力。這種以數據為中心的方法已經成為當前機器學習領域的主流趨勢。
向以資料為中心的AI轉型
資料為中心的方法改進了模型訓練的資料質量,包括清理、增強和確保資料代表真實世界場景。
隨著人工智慧(AI)模型的成熟和複雜性的擴展,組織需要集中精力提升資料質量,並建立更緊密的模型和資料之間的聯盟。在這個不斷發展的領域中,進行必要且明確的轉變非常重要:將模型更接近數據,而不是將數據傳輸到模型。這樣可以提高模型輸出的質量,並減少經常困擾AI系統的錯覺。以數據為中心的AI方法是組織的基石,這些組織希望提供基於最新數據的生成和預測體驗。
儘管以資料為中心的AI是未來發展的方向,但以模型為中心的AI仍然在一些場景下發揮關鍵作用。當資料有限或目標是探索模型複雜性和效能極限時,模型為中心的AI尤其重要。它推動著AI研究的前沿,並為解決那些難以獲得高品質數據的問題提供了可能。因此,以模型為中心的AI不僅是數據驅動的AI的補充,而是在AI領域中不可或缺的方法。
以資料為中心思維重新構想AI
透過轉變為確保資料品質和相關性的以資料為中心的AI方法,組織可以獲得以下好處:
透過提高資料品質來橋接現實
以資料為中心方法的典型優勢之一是能夠提供與真實世界場景緊密結合的體驗。與模型往往在低品質資料的謬誤中掙扎的以模型為中心方法不同,以資料為中心的人工智慧(AI)力求彌合AI模型與其試圖導航的動態現實之間的鴻溝。
減輕幻覺的陰影
AI幻覺主要是由缺陷資料造成的,其特徵是產生不正確或虛構的資訊。轉向以數據為中心的方法可以增強減少這些錯誤的可能性。在更乾淨、更具代表性的資料集上訓練模型會產生更準確、更可靠的輸出。
釋放預測和產生AI的全部潛力
在高品質資料的堅實基礎上,組織可以釋放AI預測和生成能力的全部譜系。這種轉變使AI更能夠解釋現有的數據模式,同時也能產生新的見解和體驗,培養創新和明智決策的文化。
以資料引領AI演進的未來
從以模型為中心向以資料為中心的人工智慧(AI)方法轉型,代表了一種基本的思維方式的改變。這是將數據置於AI變革之旅的核心。這種轉變不僅僅是一種技術調整,而是一種概念上的重新校準,將資料置於AI的核心。在組織走上這條道路的過程中,他們必須培養一個強大的數據基礎設施,培養數據素養,並創造一種重視數據的文化,將數據視為AI承諾的基石。
融合兩者的優勢
建立強大的AI解決方案需要對何時強調數據和關注模型創新進行細緻的理解。平衡運用以模型為中心和以資料為中心AI的優勢,對解決當今的AI挑戰至關重要,這樣組織才能從AI專案中獲得最大價值。為了幫助確保AI模型是在最新的數據上開發的,並且準確可靠,組織必須接受向以數據為中心的AI轉型。
以上是人工智慧範式從模型為中心轉向資料為中心的詳細內容。更多資訊請關注PHP中文網其他相關文章!

利用“設備” AI的力量:建立個人聊天機器人CLI 在最近的過去,個人AI助手的概念似乎是科幻小說。 想像一下科技愛好者亞歷克斯(Alex)夢見一個聰明的本地AI同伴 - 不依賴

他們的首屆AI4MH發射於2025年4月15日舉行,著名的精神科醫生兼神經科學家湯姆·因斯爾(Tom Insel)博士曾擔任開幕式演講者。 Insel博士因其在心理健康研究和技術方面的傑出工作而聞名

恩格伯特說:“我們要確保WNBA仍然是每個人,球員,粉絲和公司合作夥伴,感到安全,重視和授權的空間。” anno

介紹 Python擅長使用編程語言,尤其是在數據科學和生成AI中。 在處理大型數據集時,有效的數據操作(存儲,管理和訪問)至關重要。 我們以前涵蓋了數字和ST

潛水之前,一個重要的警告:AI性能是非確定性的,並且特定於高度用法。簡而言之,您的里程可能會有所不同。不要將此文章(或任何其他)文章作為最後一句話 - 目的是在您自己的情況下測試這些模型

建立杰出的AI/ML投資組合:初學者和專業人士指南 創建引人注目的投資組合對於確保在人工智能(AI)和機器學習(ML)中的角色至關重要。 本指南為建立投資組合提供了建議

結果?倦怠,效率低下以及檢測和作用之間的差距擴大。這一切都不應該令任何從事網絡安全工作的人感到震驚。 不過,代理AI的承諾已成為一個潛在的轉折點。這個新課

直接影響與長期夥伴關係? 兩週前,Openai提出了強大的短期優惠,在2025年5月底之前授予美國和加拿大大學生免費訪問Chatgpt Plus。此工具包括GPT-4O,A A A A A


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3漢化版
中文版,非常好用

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具