解析numpy函數的常用參數與用法
numpy是Python中常用的數值計算庫,提供了豐富的數值運算函數和資料結構,能夠方便快捷地進行數組運算和數值計算。本文將解析numpy函數的常用參數與用法,並提供具體的程式碼範例。
一、numpy函數的常用參數
- array_like: 這是numpy函數中最常見的參數,表示接受各種可迭代的物件(如列表、元組、陣列等)作為輸入。可以是多維數組,也可以是一維數組。
範例:
import numpy as np a = np.array([1, 2, 3, 4]) # 定义一维数组 b = np.array([[1, 2], [3, 4]]) # 定义二维数组 print(a) # 输出:[1 2 3 4] print(b) # 输出:[[1 2] # [3 4]]
- dtype: 這是指定陣列元素的資料類型的參數。 numpy支援多種資料類型,如int、float、bool等。
範例:
import numpy as np a = np.array([1, 2, 3], dtype=np.float) # 指定数组元素为浮点型 b = np.array([1, 2, 3], dtype=np.int) # 指定数组元素为整型 print(a) # 输出:[1. 2. 3.] print(b) # 输出:[1 2 3]
- shape: 這是指定陣列維度的參數。可以是數字,也可以是元組(或列表)。
範例:
import numpy as np a = np.array([1, 2, 3, 4]) # 一维数组 b = np.array([[1, 2], [3, 4]]) # 二维数组 print(a.shape) # 输出:(4,) print(b.shape) # 输出:(2, 2)
- axis: 這是指定在某個軸上進行操作的參數。軸表示數組的維度,從0開始逐一增加。
範例:
import numpy as np a = np.array([[1, 2], [3, 4]]) print(np.sum(a, axis=0)) # 按列求和,输出:[4 6] print(np.sum(a, axis=1)) # 按行求和,输出:[3 7]
- out: 這是指定輸出結果存放的位置的參數。可以是一個已有的數組,也可以是新建的數組。
範例:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.zeros(3) np.add(a, b, out=c) # 将a和b相加,结果放在c中 print(c) # 输出:[5. 7. 9.]
二、numpy函數的常用用法
-
建立陣列:可以使用numpy提供的各種建立函數來建立數組,如
np.array()
、np.zeros()
、np.ones()
、np.arange( )
等。
範例:
import numpy as np a = np.array([1, 2, 3]) # 创建一维数组 b = np.zeros((2, 2)) # 创建全0的二维数组 c = np.ones((3, 3)) # 创建全1的二维数组 d = np.arange(0, 10, 2) # 创建一个等差数列 print(a) # 输出:[1 2 3] print(b) # 输出:[[0. 0.] # [0. 0.]] print(c) # 输出:[[1. 1. 1.] # [1. 1. 1.] # [1. 1. 1.]] print(d) # 输出:[0 2 4 6 8]
- 陣列運算:numpy提供了豐富的陣列運算函數,如加法、減法、乘法、除法、求和、平均值等。
範例:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) print(np.add(a, b)) # 数组相加,输出:[5 7 9] print(np.subtract(a, b)) # 数组相减,输出:[-3 -3 -3] print(np.multiply(a, b)) # 数组相乘,输出:[4 10 18] print(np.divide(a, b)) # 数组相除,输出:[0.25 0.4 0.5] print(np.sum(a)) # 数组求和,输出:6 print(np.mean(a)) # 数组平均值,输出:2
- 陣列轉換:numpy提供了各種陣列轉換函數,如轉置、重塑、合併等。
範例:
import numpy as np a = np.array([[1, 2], [3, 4]]) b = np.transpose(a) # 转置数组 c = np.reshape(a, (1, 4)) # 将数组重塑为1行4列的数组 d = np.concatenate((a, b), axis=1) # 按列合并数组 print(b) # 输出:[[1 3] # [2 4]] print(c) # 输出:[[1 2 3 4]] print(d) # 输出:[[1 2 1 3] # [3 4 2 4]]
本文介紹了numpy函數的常用參數與用法,並提供了具體的程式碼範例。掌握這些函數的用法,能夠更有效率地進行陣列運算和數值計算,提升程式效率。
以上是numpy函數常用參數和用法的分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

如何使用正則表達式匹配到第一個閉合標籤就停止?在處理HTML或其他標記語言時,常常需要使用正則表達式來�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版
中文版,非常好用

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1
強大的PHP整合開發環境